

TOP 5 REASONS STEEL IS THE **BEST FOR** YOUR HOME

MODERN CONTEMPORARY DESIGN

MINIMALISTIC DESIGN

BOLDERDESIGN

STRAIGHT LINE PROFILE

STEEL **ALLOWS FOR ORGANIC** DESIGN

STEEL **ALLOWS FOR ORGANIC** DESIGN

STEEL **ALLOWS FOR ORGANIC** DESIGN

STEL IN TEXTURED FINISH

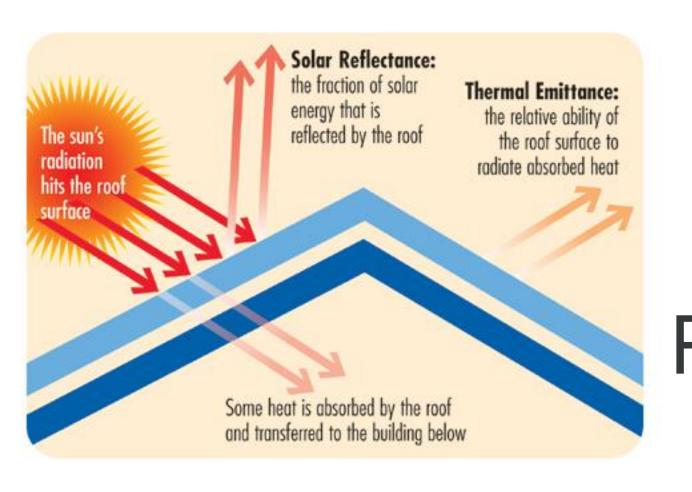
STATE OF COMFORT

555555

555555

STEEL

CONCRETE


STEEL

CONCRETE

ROOFING MATERIAL	UNIT MASS kg/m ²
Concrete roof tiles	44
Fibre cement roofing @ 6 mm	19
Fibre cement sheet roofing @ 7 mm (commercial/industrial)	14
Hardwood roofing @ 10 mm	8.5
Steel roofing @ 0.5 mm (residential)	4.9
Steel roofing @ 0.53 mm (commercial/industrial)	5.6
Synthetic rubber membrane roofing @ 1.5 mm	1.84
Terracotta roof tiles	49

PROPERTY	LOW THERMAL MASS	HIGH THERMAL MASS
Heats up quickly	✓	×
Cools down quickly	✓	×
Takes a lot of energy to alter temperature	×	✓
Stores thermal energy	×	✓
Lightweight	✓	×

HIGH SOLAR REFLECTANCE

HIGH SOLAR REFLECTANCE

LIGHTER COLOURS

POTENTIAL COOLING ENERGY SAVINGS

300m² single storey house

Off White (SRI: 80)

Cape Charcoal (SRI: 20)

- Set parameters: Medium level insulation (R3.2), cooling system away from roofspace and roof.
- Based on simple addition of potential upfront HVAC. cooling equipment saving and potential annual cooling energy savings.
- Light to dark roof (solar reflectance change of 60%) provides cooling savings ranging from 10 to 50% (20% average).
- Electricity tariff rate = RM0.365/kWh, includes blending of consumption and a demand charge reduction.
- Annual cooling cost of RM19.16/m² (53kWh/m²/year @ RM0.365/kWh).
- Includes HVAC cooling equipment saving valued at @930/kW^[1].
- HVAC peak load saving calculated based on representative hot day steady state heat flow reduction (I=1000 W/m², T_{in}=22°C, T_{out}=34°C, wind=0.5m/s).
- Note: Cooling energy savings will vary considerably as each building is unique in its construction and operation. Factors such as the amount, quality and installation of roof insulation, the roof size, the type of HVAC equipment and presence of ducting within or near the roofspace will also influence potential savings. When air conditioning is not used the building will be cooler in hot weather.
- Sources: [1] http://www.airah.org.au/imis15_prod/Content_Files/EcoLibrium/2010/December/2010_12_01.pdf.

Note:

Assumptions:

- This simulation is calculated based on BlueScope's internally developed calculation tool, titled "Guide to Potential Air Conditioning Cooling Energy Savings".

Comparing 2 colours of different solar reflectance value.

Possible cooling saving:

~RM7,028 for 5years

~RM11,566 for 10years

Possible upfront HVAC saving:

~RM2,490

POTENTIAL COOLING ENERGY SAVINGS

300m² single storey house

Armour Grey (SRI: 48)

Possible cooling saving:

~RM1,702 for 5years

~RM2,660 for 10years

Possible upfront HVAC saving:

~RM744

Assumptions:

- Set parameters: Medium level insulation (R3.2), cooling system away from roofspace and roof.
- Based on simple addition of potential upfront HVAC. cooling equipment saving and potential annual cooling energy savings.
- Light to dark roof (solar reflectance change of 60%) provides cooling savings ranging from 10 to 50% (20% average).
- Electricity tariff rate = RM0.365/kWh, includes blending of consumption and a demand charge reduction.
- Annual cooling cost of RM19.16/m² (53kWh/m²/year @ RM0.365/kWh).
- Includes HVAC cooling equipment saving valued at @930/kW^[1].
- HVAC peak load saving calculated based on representative hot day steady state heat flow reduction (I=1000 W/m², T_{in}=22°C, T_{out}=34°C, wind=0.5m/s).
- Note: Cooling energy savings will vary considerably as each building is unique in its construction and operation. Factors such as the amount, quality and installation of roof insulation, the roof size, the type of HVAC equipment and presence of ducting within or near the roofspace will also influence potential savings. When air conditioning is not used the building will be cooler in hot weather.

Generic Armour Grey (SRI: 40)

- Sources: [1] http://www.airah.org.au/imis15_prod/Content_Files/EcoLibrium/2010/December/2010_12_01.pdf.

Note:

- This simulation is calculated based on BlueScope's internally developed calculation tool, titled "Guide to Potential Air Conditioning Cooling Energy Savings".

MALAYSIAN STANDARD

MS 1525:2014

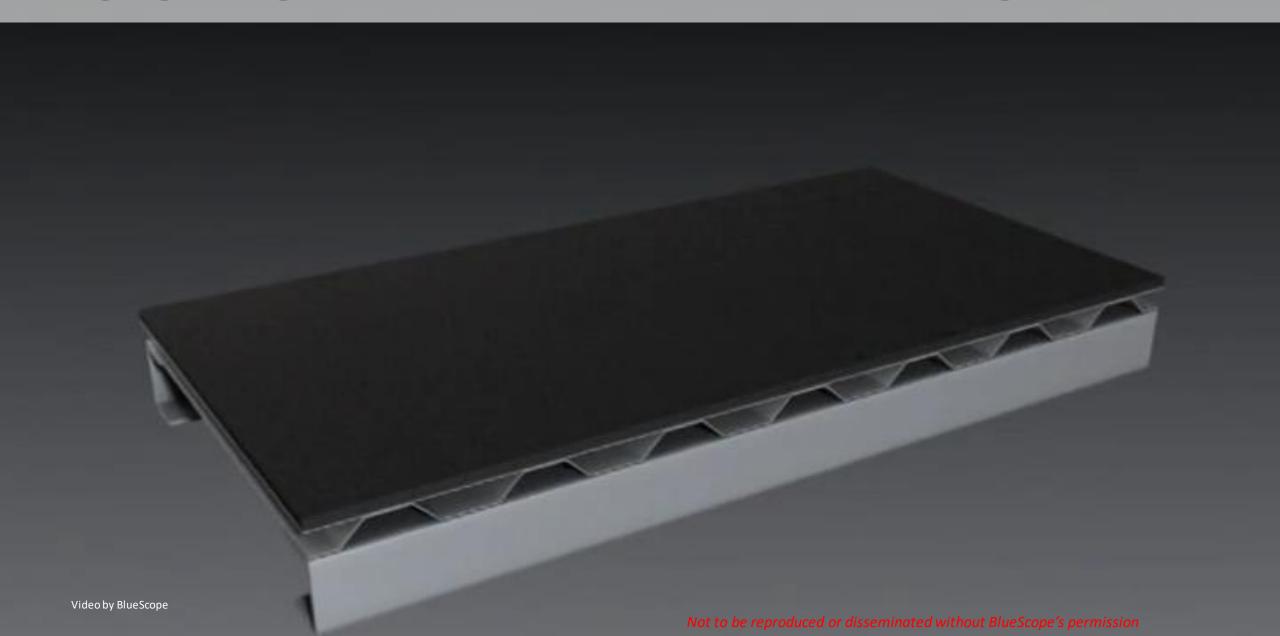
Energy efficiency and use of renewable energy for non-residential buildings - Code of practice (Second revision)

VERSION 3.0 | JULY 2013

ICS: 91.040.01

INSTALL WITH INSULATION

COST LESS TO A COOL HOME



TILES ARE RELATIVELY EASY TO TAKE APART

CONCEALED FIXED PROFILE

IMPROVES WEATHER TIGHTNESS

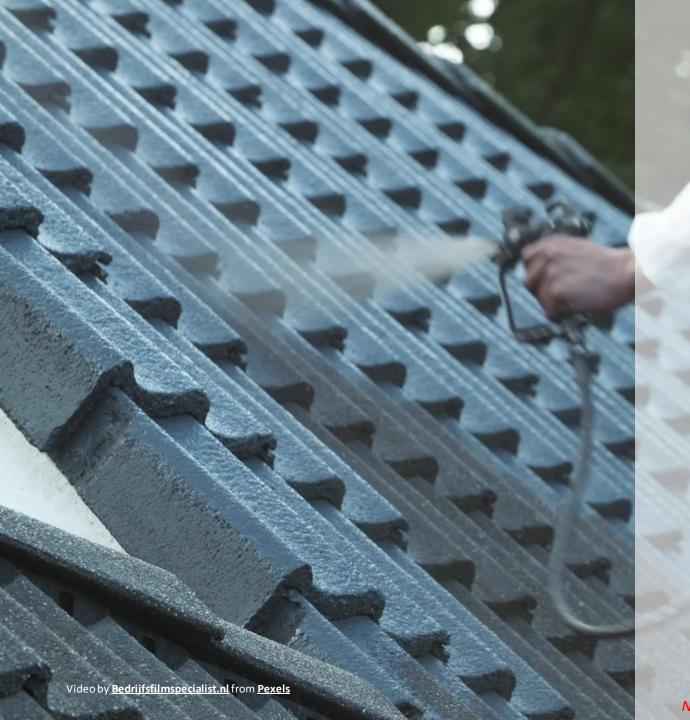
Not to be reproduced or disseminated without BlueScope's permission

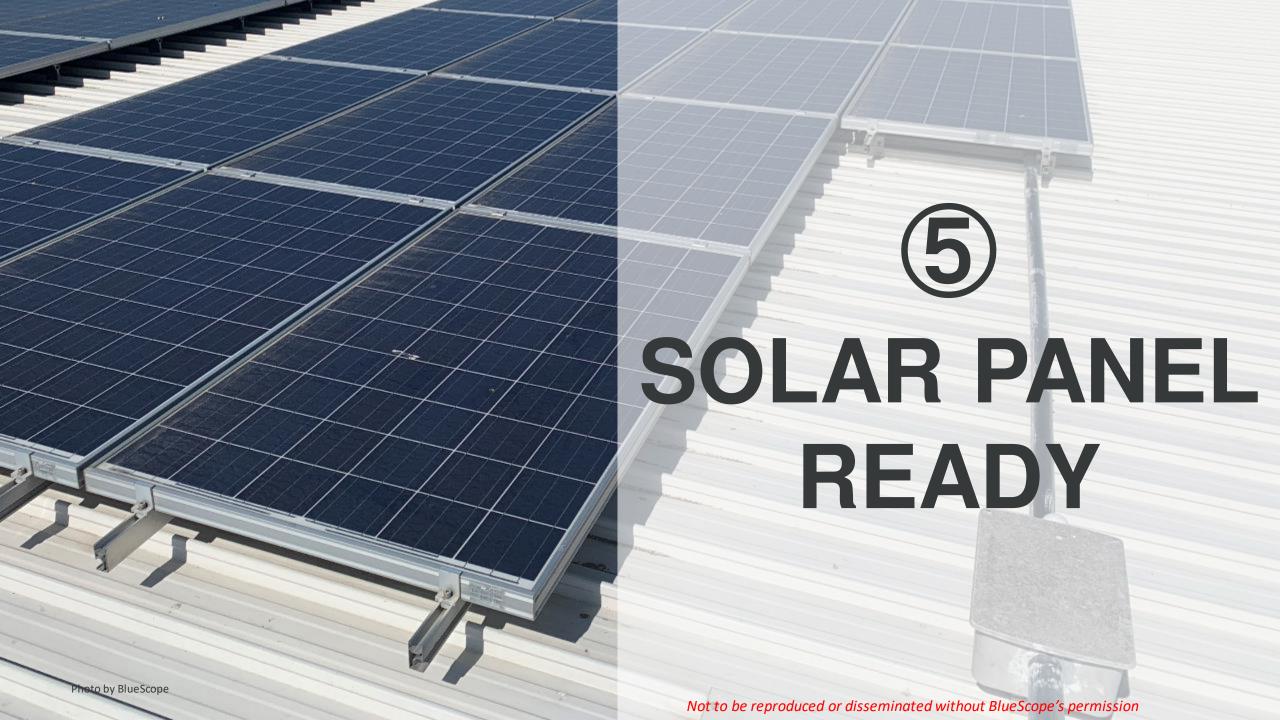
STEEL IS TERMITE PROOF

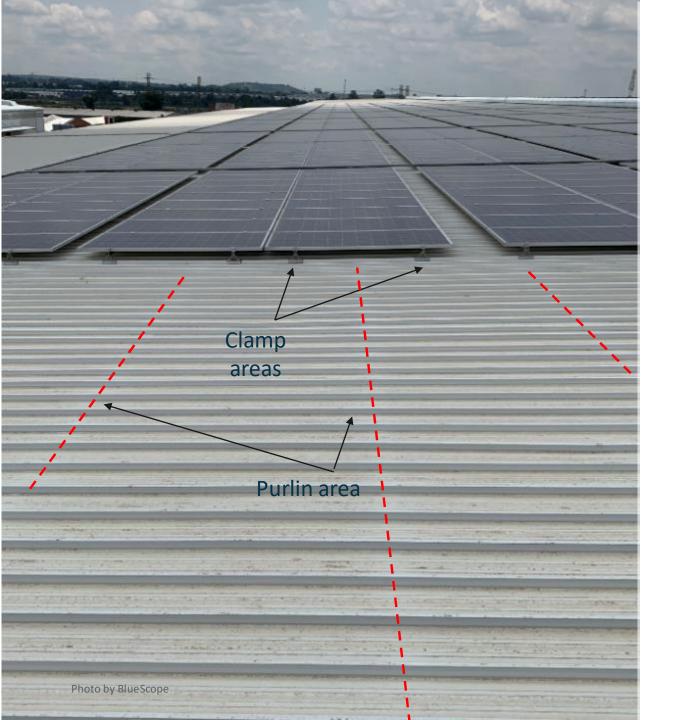
STEEL IS TERMITE PROOF

SECURE FROM BURGLARS, WEATHER AND TERMITE

Not to be reproduced or disseminated without BlueScope's permission






ELIMINATE REPAINTING OR REPATCHING WORK

Not to be reproduced or disseminated without BlueScope's permission

SUPPORT INSTALLATION OF SOLAR PANEL

FREQUENT MAINTENANCE

SOPHISTICATED DESIGN

STATE OF COMFORT

A SENSE OF SECURITY

EASE OF MAINTENANCE

SOLAR PANEL READY

Zincalume°

TrueCore®

