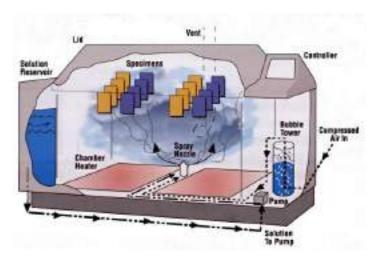
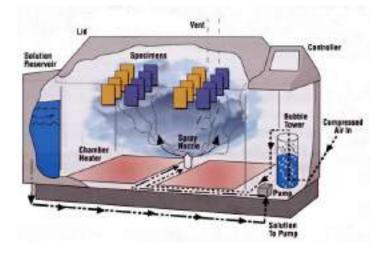
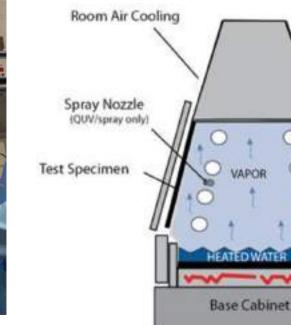


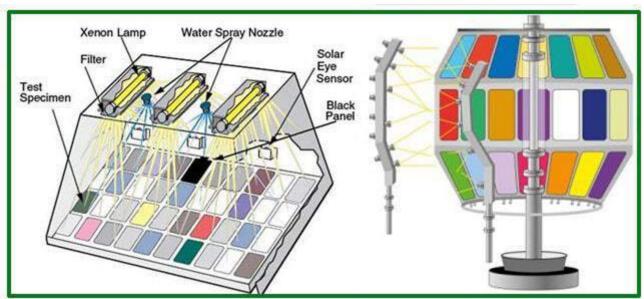
DIFFERENCE BETWEEN ACCELERATED TESTS VS OUTDOOR WEATHERING TESTS



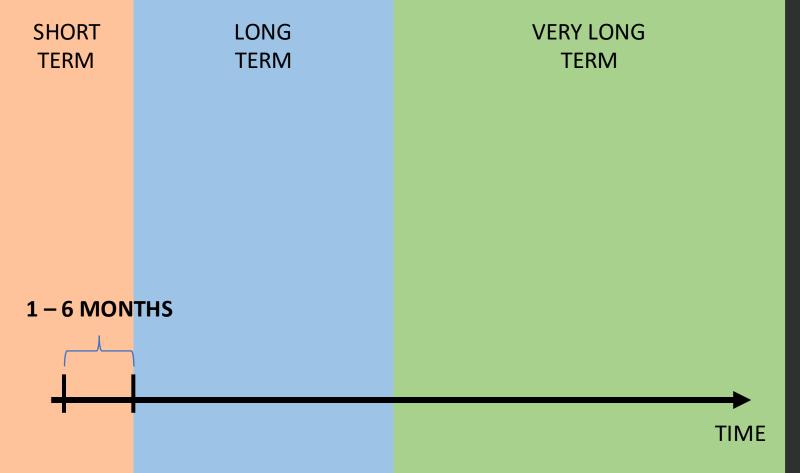



THERE ARE A FEW METHODS ADOPTED

SALT SPRAY TEST

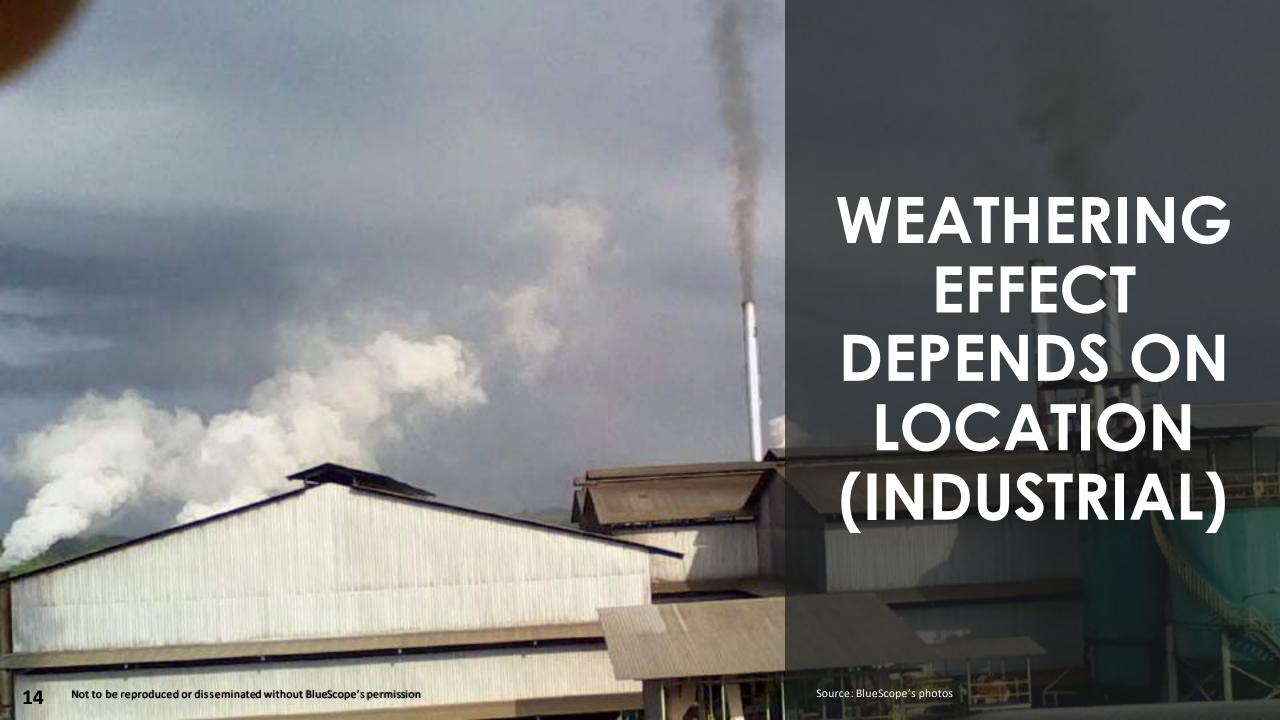


UV TEST



TESTS CONDUCTED IN A CHAMBER

Source: https://www.ascott-analytical.com/how-chambers-work/cct-chamber-acc30-salt-spray-vertically-down-how-it-works/; https://www.testlabs.my/update-and-stories/comparison-of-xenon-arc-chamber-and-quv-tester





SHORT TERM AROUND 1 – 6 MONTHS

TYPICALLY TAKES 1 – 10 YEARS

TO DETERMINE THE MATERIAL PERFORMANCE IN A SPECIFIC ENVIRONMENT

LONGER-TERM EXPOSURE IS AROUND 10 – 25 YEARS

INTERNATIONAL STANDARD

ISO 9223

Second edition 2012-02-01

Corrosion of metals and alloys — Corrosivity of atmospheres — Classification, determination and estimation

Corrosice des métaux et all'ages — Corrosivité des atmosphères — Classification, déleumination et extraplica

ISO

Reference number (60 \$203/2012(II)

@ ISO 2012

ENVIRONMENT CLASSIFIED UNDER ISO 9223

INTERNATIONAL STANDARD 1SO 9223

2012-02-01

Corrosion of metals and alloys — Corrosivity of atmospheres — Classification, determination and estimation

CORROSIVITY OF ATMOSPHERES

Reference number 160 5223/2012(II)

9 (50 20)

Table 1 — Categories of corrosivity of the atmosphere

Category	Corrosivity
C1	Very low
C2	Low
C3	Medium
C4	High
C5	Very high
CX	Extreme

WHAT'S THE STANDARD ABOUT?

Table 2 — Corrosion rates, r_{corr}, for the first year of exposure for the different corrosivity categories

Corrosivity category	Corrosion rates of metals ² corr				
	Unit	Carbon steel	Zinc	Copper	Aluminium
C1	g/(m²·a) µm/a	$r_{corr} \le 10$ $r_{corr} \le 1,3$	$r_{\text{corr}} \le 0.7$ $r_{\text{corr}} \le 0.1$	$r_{corr} \le 0.9$ $r_{corr} \le 0.1$	negligible —
C2	g/(m²·a) µm/a	$10 < r_{\text{corr}} \le 200$ $1.3 < r_{\text{corr}} \le 25$	$0.7 < r_{COFF} \le 5$ $0.1 < r_{COFF} \le 0.7$	$0.9 < r_{COTT} \le 5$ $0.1 < r_{COTT} \le 0.6$	$r_{\text{corr}} \le 0.6$
C3	g/(m².a) µm/a	$200 < r_{corr} \le 400$ $25 < r_{corr} \le 50$	$5 < r_{corr} \le 15$ $0.7 < r_{corr} \le 2.1$	$5 < r_{corr} \le 12$ $0.6 < r_{corr} \le 1.3$	0,6 < r _{corr} ≤ 2
C4	g(m²-a) µm/a	$400 < r_{\text{corr}} \le 650$ $50 < r_{\text{corr}} \le 80$	$15 < r_{\rm corr} \le 30$ $2.1 < r_{\rm corr} \le 4.2$	$12 < r_{corr} \le 25$ $1.3 < r_{corr} \le 2.8$	2 < r _{corr} ≤ 5
C5	g/(m²-a) µm/a	$650 < r_{corr} \le 1500$ $80 < r_{corr} \le 200$	$30 < r_{\text{COFT}} \le 60$ $4.2 < r_{\text{COFT}} \le 8.4$	$25 < r_{\text{conf}} \le 50$ $2.8 < r_{\text{conf}} \le 5.8$	5 < r _{corr} ≤ 10
сх	g/(m²·a) µm/a	$1500 < r_{corr} \le 5500$ $200 < r_{corr} \le 700$	$60 < r_{corr} \le 180$ $8.4 < r_{corr} \le 25$	$50 < r_{corr} \le 90$ $5.6 < r_{corr} \le 10$	r _{corr} > 10

CLASSIFIED BY FIRST YEAR EXPOSURE OF BASIC METALS

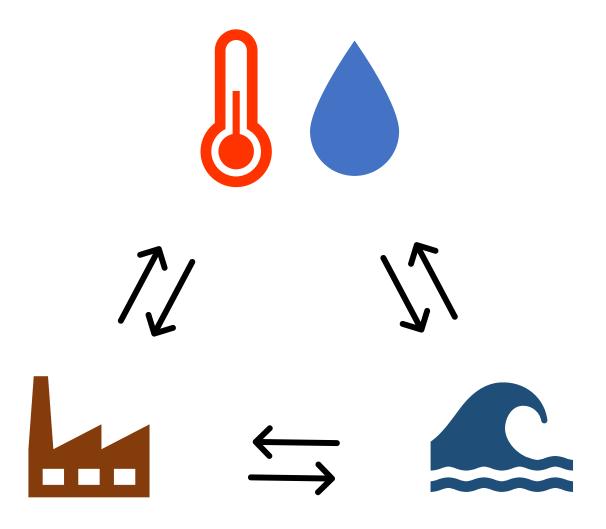
Source: https://www.ebay.com.sg/itm/STEEL-BENCH-BLOCK-JEWELERS-STEEL-BLOCK-HARDENED-METAL-WORKING-ANVIL-4-SQUARE/191186820964:

Use Equation (1) for carbon steel:

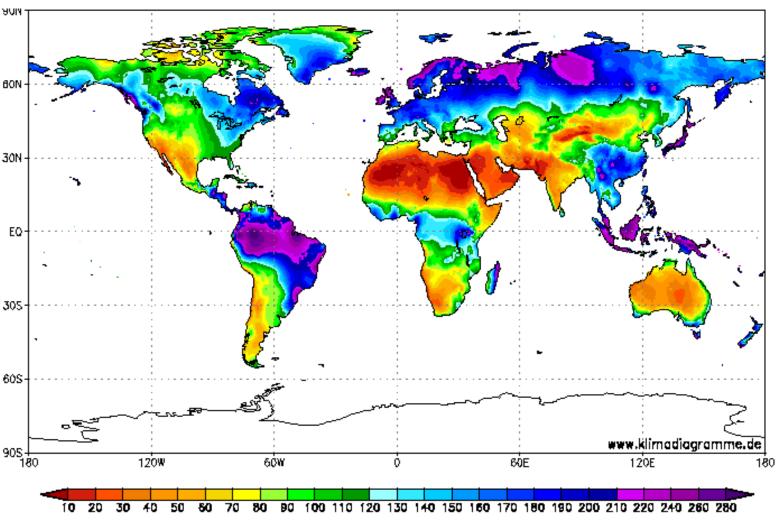
$$r_{\text{corr}} = 1,77 \cdot P_{\text{d}}^{0,52} \cdot \exp(0,020 \cdot \text{RH} + f_{\text{St}}) + 0,102 \cdot S_{\text{d}}^{0,62} \cdot \exp(0,033 \cdot \text{RH} + 0,040 \cdot T)$$

$$f_{St} = 0.150 \cdot (T - 10)$$
 when $T \le 10$ °C; otherwise $-0.054 \cdot (T - 10)$

$$N = 128$$
, $R^2 = 0.85$

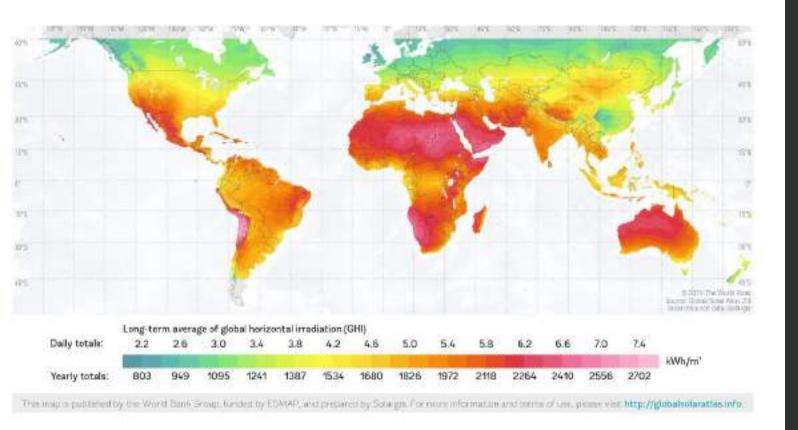

Table 3 — Parameters used in the derivation of dose-response functions, including symbol, description, interval and unit

Symbol	mbol Description Interval		Unit
T	Temperature	-17,1 to 28,7	°C
RH	Relative humidity	34 to 93	%
P_{d}	SO ₂ deposition	0,7 to 150,4	mg/(m ² ·d)
S_{d}	CI ⁻ deposition	0,4 to 760,5	mg/(m ² ·d)

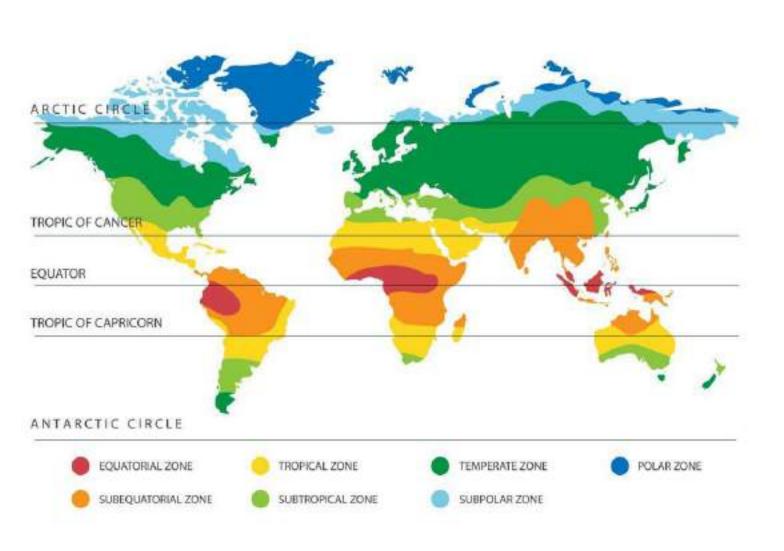

The sulfur dioxide (SO₂) values determined by the deposition method, $P_{\rm d}$, and volumetric method, $P_{\rm c}$, are equivalent for the purposes of this International Standard. The relationship between measurements using both methods may be approximately expressed as $P_{\rm d}$ = 0,8 $P_{\rm c}$ [$P_{\rm d}$ in mg/(m²·d), $P_{\rm c}$ in µg/m³].

NOTE All parameters are expressed as annual averages.

CAN BE ESTIMATED USING AN EQUATION



3 KEY ELEMENTS



Daten: IPCC — Intergovernmental Panel on Climate Change

TIME OF WETNESS

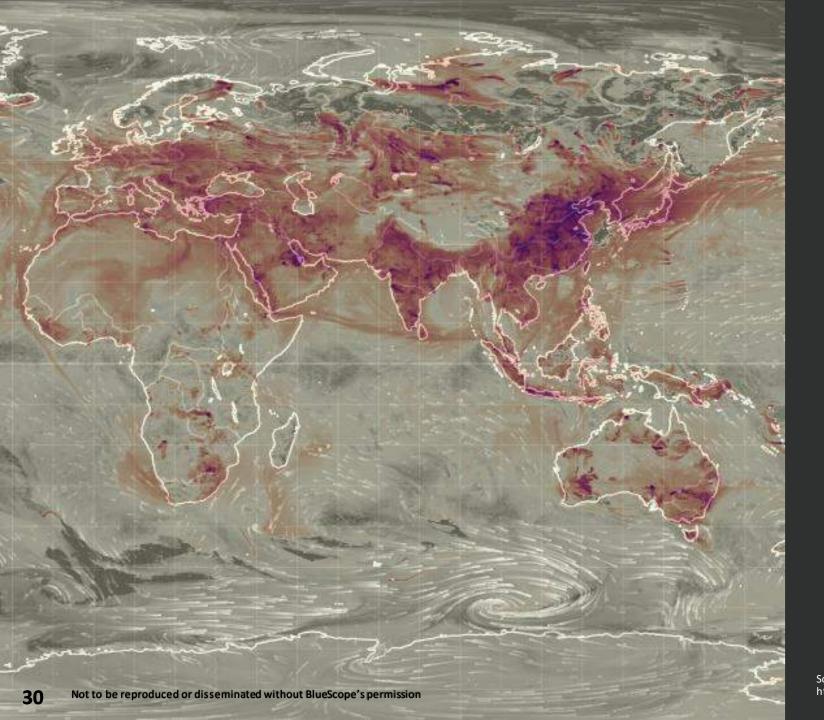
UV IRRADIATION

CLIMATE

POLLUTANTS LEVEL FROM INDUSTRIAL (SO₂)

Table B.3 — Grouping of pollution by sulfur-containing substances represented by SO₂

Deposition rate of SO ₂ mg/(m ² -d)	Concentration of SO ₂ µg/m ³	Level
P _d ≤ 4	P _c ≤ 5	P_0 Rural atmosphere
4 < P _d ≤ 24	5 < P _c ≤ 30	P ₁ Urban atmosphere
$24 < P_{\rm d} \le 80$	$30 < P_c \le 90$	P ₂ Industrial atmosphere
$80 < P_d \le 200$	90 < P _e ≤ 250	P ₃ Highly polluted industrial atmosphere


NOTE 1 Methods of determination of sulfur dioxide (SO₅) are specified in ISO 9225.

NOTE 2. The sulfur dioxide (SO₂) values determined by the deposition, P_{dr} and volumetric, P_{cr} methods are equivalent for the purposes of this International Standard. The relationship between measurements using both methods can be approximately expressed as: $P_{dr} = 0.8 P_{er}$. This conversional factor is based on the deposition rate measurements on alkaline surfaces.

NOTE 3 For the purposes of this International Standard, the sulfur dioxide (SO₂) deposition rate and concentration are calculated from continuous measurements during at least one year and are expressed as the annual average. The results of short-term measurements can differ considerably from long-term values. Such results are only used for guidance.

NOTE 4 The ranges given cover common levels in individual types of atmospheres. Extreme values are listed in Table B.2.

SULFUR DOMINATED POLLUTANTS

SO₂ WORLD MAP

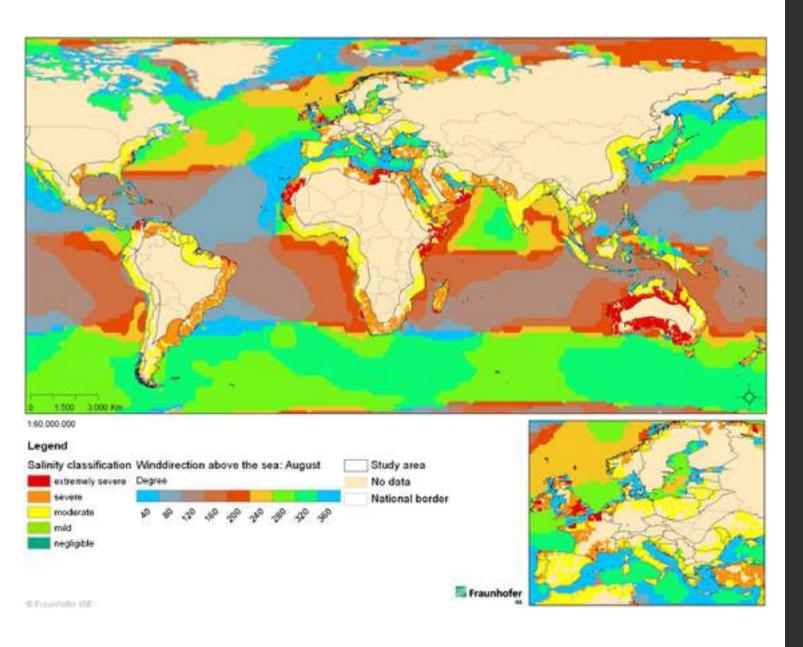


Table B.4 — Grouping of pollution by airborne salinity represented by chloride

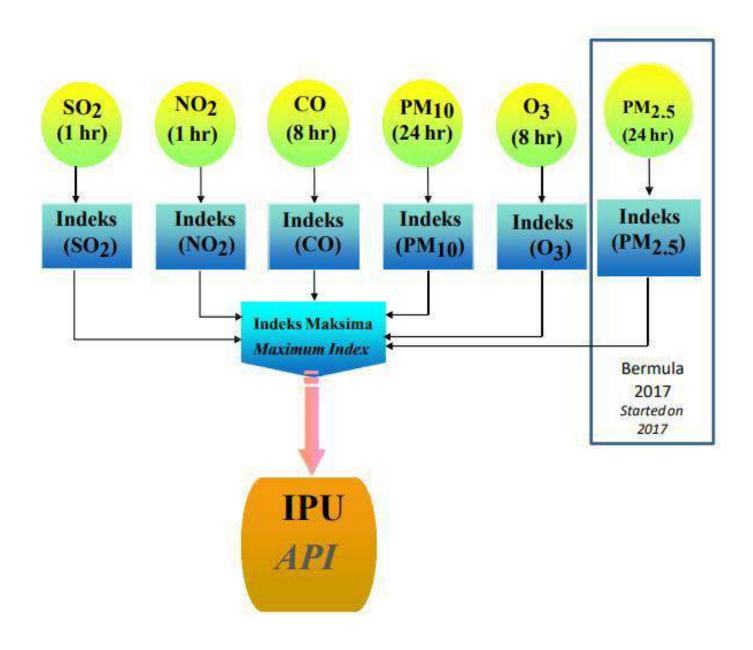
Deposition rate of chloride mg/(m ² ·d)	Level
S _d ≤ 3	s_0
3 < S _d ≤ 60	S_4
$60 < S_d \le 300$	S ₂
300 < S _d ≤ 1 500	s_3

- NOTE 1 The airborne salinity level according to this International Standard is based on the wet candle method specified in ISO 9225.
- NOTE 2 The results obtained by applying various methods (i.e. dry plate method) for the determination of the salt content in the atmosphere are not always directly comparable and convertible. Derived conversion factors are given in ISO 9225.
- NOTE 3 For the purposes of this International Standard, the chloride deposition rate is expressed as the annual average. The results of short-term measurements are very variable and depend very strongly upon weather effects.
- NOTE 4 Extreme pollution by chloride, which is typical of strong marine splash and spray, is outside of the scope of this International Standard.
- NOTE 5 The airborne salinity is strongly dependent on the variables influencing the transport inland of sea-salt, such as wind direction, wind velocity, local topography, distance of the exposure site from the sea, etc.

CHLORIDE DOMINATED POLLUTANTS

SALINITY WORLD MAP

Table B.2 — Outdoor concentration of some of the most important pollutants in different types of environments


Pollutant	Concentration/deposition (yearly average value)		Source	
SO ₂	rural: urban: industrial:	2 – 15 (µg/m ³) 5 – 100 (µg/m ³) 50 – 400 (µg/m ³)	The main sources for SO ₂ are the use of coa and oil and emissions from industrial plants.	
NO ₂	rural: urban:	2 – 25 (µg/m ³) 20 – 150 (µg/m ³)	Traffic is the main source for NO ₂ emissions.	
HNO ₃	rural: urban/industrial:	0,1 – 0,7 (μg/m ³) 0,5 – 4 (μg/m ³)	HNO ₃ is correlated with NO ₂ . Hig concentrations of NO ₂ , organic compounds an UV light increase the concentration.	
03		20 – 90 (μg/m³)	O ₃ is formed in the atmosphere by an interactions among sunlight, oxygen and pollutants. The concentrations are higher in polluted rural atmospheres and lower in high-traffic urban areas.	
H ₂ S	normally: industrial and animal	1 – 5 (μg/m³) shelter: 20 – 250 (μg/m³)	There are some natural sources, for instance swamps and volcanic activities. The pulp and paper industry and farming give the highest concentrations.	
Cl ₂	normally: some industry plants	0,1 (µg/m³) :: up to 20 (µg/m³)	The main source is emissions from the pulp and paper industry.	
CI	depending on geogra in marine atmospher	0,1 – 200 (μg/m ³) aphic situation – es 300 – 1 500 (μg/m ³)	The main sources are the ocean and de-icing or roads.	
NH ₃	normally low concentrations: close to source:	< 20 (µg/m³) up to 3 000 (µg/m³)	Fertilization in the agricultural area source and emissions from industry and food production can give the highest average values.	
Particles-PM ₁₀	rural: urban/industrial:	10 – 25 (μg/m³) 30 – 70 (μg/m³)	Rural: largely inert components Urban: high-concentration traffic areas corrosive components Industrial: emissions from production can give high concentrations.	
Particles (dust deposits)	rural urban/industrial:	450 – 1 500 [mg/(m²·a)] 1 000 – 6 000 [mg/(m²·a)]	Rural: largely inert components Urban and industrial:	

OTHER POLLUTANTS

FUN FACT API TAKES INTO ACCOUNT SO₂ & NO₂ EMISSIONS

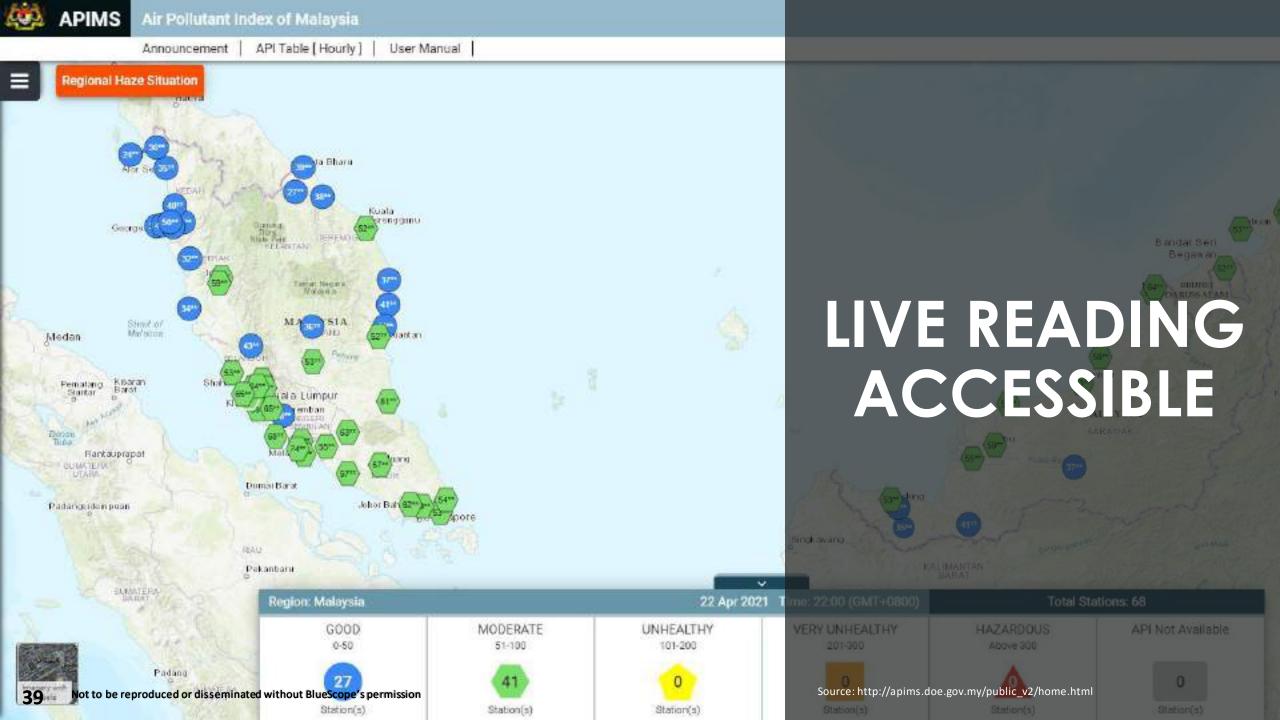
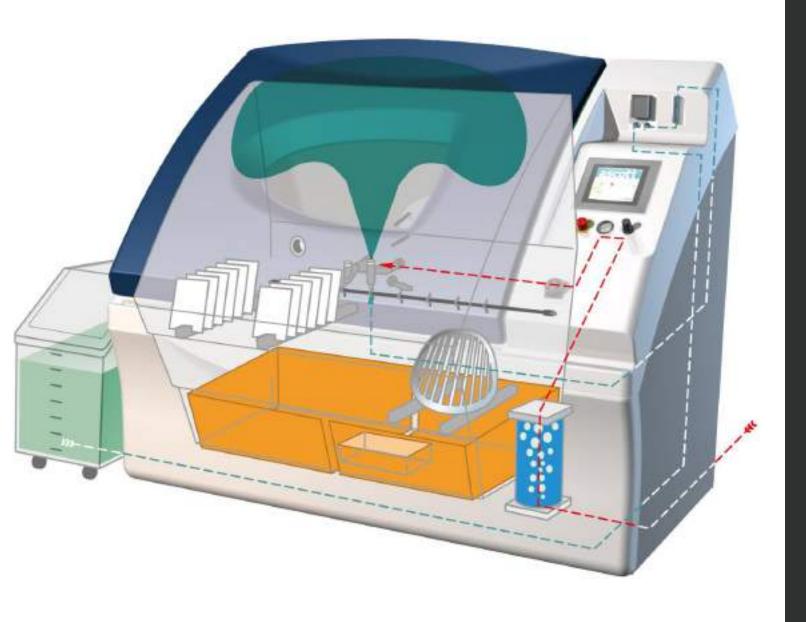


Table C.1 — Description of typical atmospheric environments related to the estimation of corrosivity categories

Corrosivity		Typical environments — Examples ^b				
category ^a	Corrosivity	Indoor	Outdoor			
C1	Very low	Heated spaces with low relative humidity and insignificant pollution, e.g. offices, schools, museums	Dry or cold zone, atmospheric environment with very low pollution and time of wetness e.g. certain deserts, Central Arctic/Antarctica			
C2	Low	Unheated spaces with varying temperature and relative humidity. Low frequency of condensation and low pollution, e.g.	Temperate zone, atmospheric environment with low pollution (SO ₂ < 5 µg/m ³), e.g. rura areas, small towns			
		storage, sport halls	Dry or cold zone, atmospheric environment with short time of wetness, e.g. deserts subarctic areas			
C3	Medium	Spaces with moderate frequency of condensation and moderate pollution from production process, e.g. food-processing plants, laundries, breweries, dairies	Temperate zone, atmospheric environment with medium pollution (SO ₂ 5 µg/m ³ to 30 µg/m ³) or some effect of chlorides, e.g. urban areas, coastal areas with low deposition of chlorides			
			Subtropical and tropical zone, atmosphere with low pollution			
C4	High	Spaces with high frequency of condensation and high pollution from production process, e.g. industrial processing plants, swimming pools	Temperate zone, atmospheric environment with high pollution (SO ₂ , 30 µg/m ³ to 90 µg/m ³) or substantial effect of chlorides e.g. polluted urban areas, industrial areas coastal areas without spray of salt water or exposure to strong effect of de-icing salts. Subtropical and tropical zone, atmosphere with medium pollution.			
C5	Very high	Spaces with very high frequency of condensation and/or with high pollution from production process, e.g. mines, caverns for industrial purposes, unventilated sheds in subtropical and tropical zones	Temperate and subtropical zone atmospheric environment with very high pollution (SO ₂ : 90 µg/m ³ to 250 µg/m ³) and/or significant effect of chlorides, e.g. industrial areas, coastal areas, sheltered positions on coastline.			
cx	Extreme	Spaces with almost permanent condensation or extensive periods of exposure to extreme humidity effects and/or with high pollution from production process, e.g. unventilated sheds in humid tropical zones with penetration of outdoor pollution	Subtropical and tropical zone (very high time of wetness), atmospheric environment with very high SO ₂ pollution (higher than 250 µg/m ²) including accompanying and production factors and/or strong effect of chlorides, e.g. extreme industrial areas,			

GENERAL DESCRIPTION OF DIFFERENT CORROSIVITY CATEGORIES

Table 1. Corrosivity category


Corrosivity category	1920 1980 1981	Corrosion rate/mild steel ^b (μm/y)	Types of atmosphere ^a						
	Description		Rural	Urban	Industrial	Marine	Pollution and humidity	Sea front	
C1	Very low	≤1.3							
C2	Low	> 1.3 to 25							
СЗ	Medium	> 25 to 50			Low SO2	Low salinity			
C4 (T)	High or tropical	> 50 to 80			Moderate SO2	Moderate salinity			
C5-I	Very high - industrial	> 80 to 200			High SO2				
C5-M	Very high - geothermal, marine	> 80 to 200				High salinty		High salinity	

NOTE. A severe industrial environment occurs as a result of the release of corrosion substances such as chemicals and solvents into the surrounding atmosphere. The choice of a C5-I product will be influenced by the particular chemicals or solvents causing the contamination, and requires consideration on an individual basis.

GENERAL DESCRIPTION OF DIFFERENT CORROSIVITY CATEGORIES

[&]quot;See Annex B

^b See ISO 9223

1 SALT SPRAY TEST

Designation: B117 - 18

Standard Practice for Operating Salt Spray (Fog) Apparatus¹

This standard is inaged under the fixed designation BTTT, the number immediately following the designation indicates the year of retained adoption on in the case of territories, the year of fast staggerest, A supervising agreement to indicate an effected abundance that temperature agreement is indicated an effected abundance that territories or reagreement.

This standard has been approved for use by opinious of the U.S. Department of Defense.

A4 2011-11...2000 Reconfirmed 2017

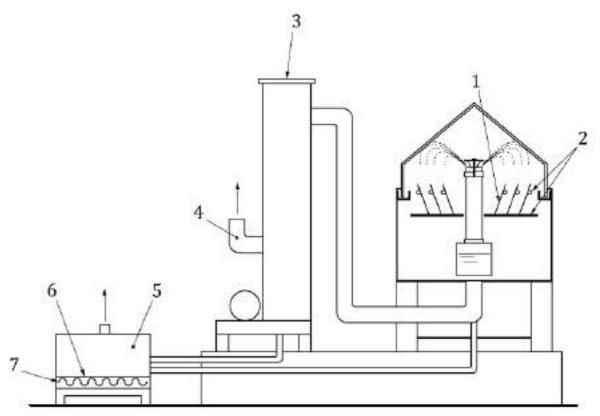
Australian Standard"

Methods of test for metallic and related coatings

Method 3.1: Corrosion and related property tests—Neutral salt spray test (NSS test)

INTERNATIONAL STANDARD

ISO 9227


Fourth edition 2017-03

Corrosion tests in artificial atmospheres — Salt spray tests

Essais de corrosion en atmosphères artificielles — Essais aux brouillards salins

SALT SPRAY TEST METHOD

Key

- test specimen
- 2 test specimen support
- 3 exhaust air treatment unit
- 4 air-outlet port
- 5 drain-treatment unit
- 6 salt tray
- 7 heating elements

Figure A.2 - Schematic diagram of one possible design of spray cabinet (side view)

SALT SPRAY TEST SETUP

Salt spray was first used for corrosion testing around 1914. In 1939, the neutral salt spray test was incorporated as ASTM B117.¹ This traditional salt spray specifies a continuous exposure to a 5% salt fog at 35°C. During the course of 80 years of use, there have been many modifications and refinements to B117. In spite of all these refinements, there has long been general agreement that "salt spray" test results do not correlate well with the corrosion seen in actual atmospheric exposures. Nevertheless, B117

3. Significance and Use

- 3.1 This practice provides a controlled corrosive environment which has been utilized to produce relative corrosion resistance information for specimens of metals and coated metals exposed in a given test chamber.
- 3.2 Prediction of performance in natural environments has seldom been correlated with salt spray results when used as stand alone data.
- 3.2.1 Correlation and extrapolation of corrosion performance based on exposure to the test environment provided by this practice are not always predictable.
- 3,2.2 Correlation and extrapolation should be considered only in cases where appropriate corroborating long-term atmospheric exposures have been conducted.

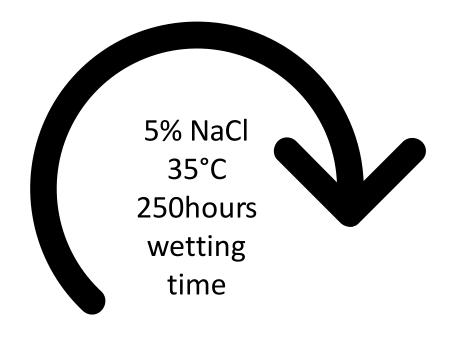
AS 2331.3.1

1 SCOPE

This Standard sets out the method for the neutral salt spray (NSS) test for the assessment of corrosion resistance of inorganic and organic coatings on metallic substrates.

NOTES:

- 1 The method does not specify the type of test item, the exposure period or the assessment criteria. Such details are normally specified in the relevant product Standard or determined by agreement between the purchaser and the supplier.
- It is important that the results obtained from the test are not regarded as having a direct correlation with environments in which items may be exposed in service or as indicating the relative corrosion resistance of different coatings.
- 3 The test procedures described in this Standard do not necessarily include all of the


ISO 9227:2012

The salt spray methods are all suitable for checking that the quality of a metallic material, with or without corrosion protection, is maintained. They are not intended to be used for comparative testing as a means of ranking different materials relative to each other with respect to corrosion resistance or as means of predicting long-term corrosion resistance of the tested material.

SALT SPRAY TEST METHOD

SALT SPRAY TEST PARAMETERS

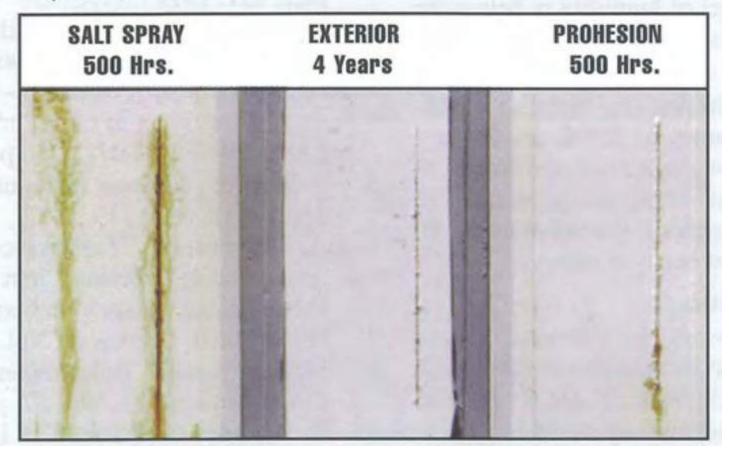
TIME

MS 2383

Table 4. Exposure duration for neutral salt spray tests

Corrosivity Category	Exposure duration (h)
C2	100
C3	500
C4 (T)	1 000
C5-I	2 000
C5-M	2 000

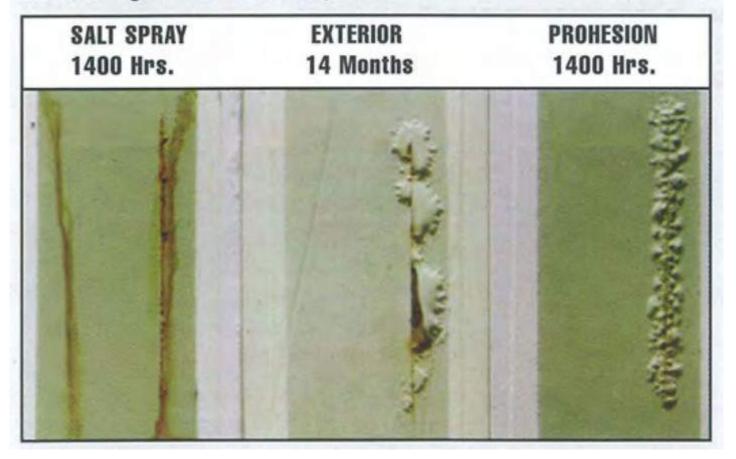
SALT SPRAY TEST DURATIONS



1 SALT SPRAY TEST (SST)

Two Coat Latex

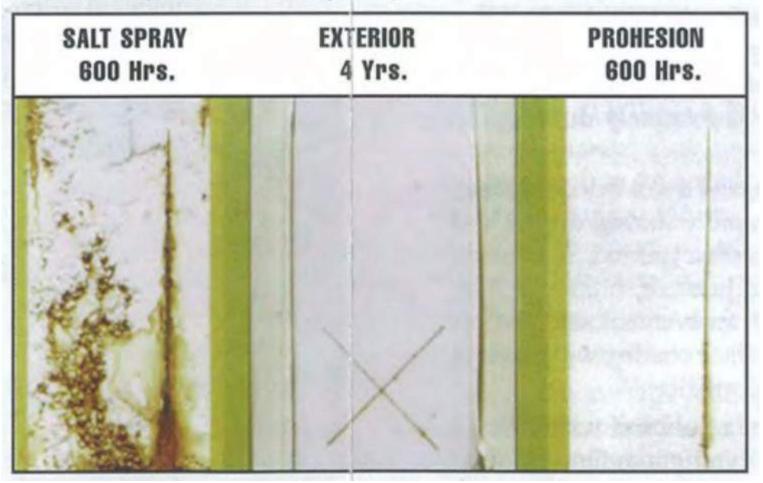
Poor correlation between salt spray and industrial exposure. Fairly good correlation between Prohesion and exterior exposure.



SHORTFALL OF SALT SPRAY TEST

High Solids Epoxy

Excellent performance in salt spray with little blistering, no scribe creepage or undercut corrosion. Exterior exposure shows severe delamination from scribe and no correlation with salt spray. Prohesion shows blistering and delamination, correlating with exterior exposure.



SHORTFALL OF SALT SPRAY TEST

Medium Oil Alkyd, Inhibitor B

A sharp contrast between industrial site exposure and salt spray. Salt spray shows complete failure. Prohesion and Exterior exposures show good performance.

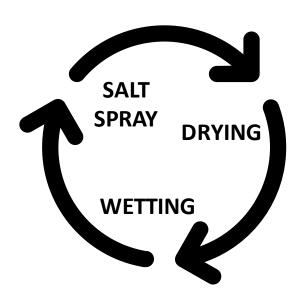
SHORTFALL OF SALT SPRAY TEST

SALT SPRAY TEST

Test condition:

Duration of exposure : 250 hours

Temperature exposure zone : 35°C

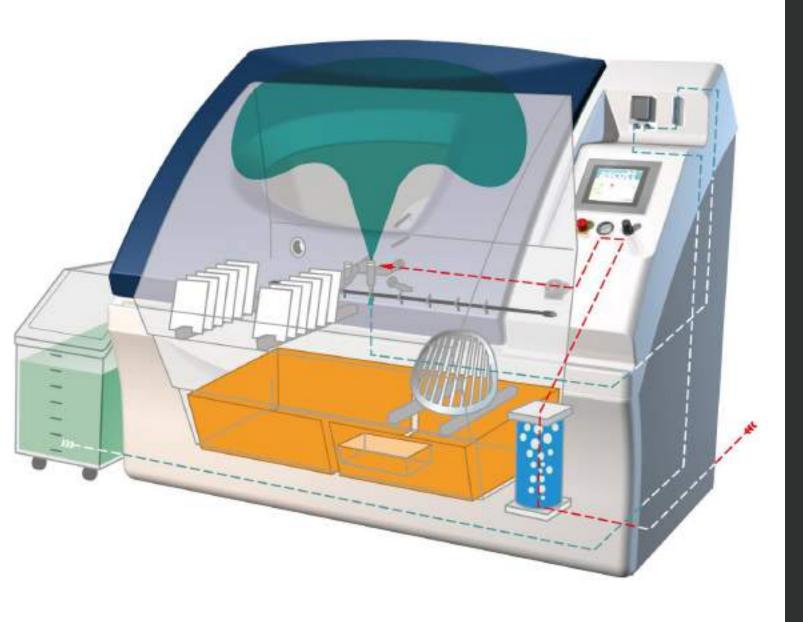

Salt solution used : 5% of NaCl

pH of collected solution : $6.2 \sim 6.8$

SG of collected solution : 1.03

Volume of salt collected in ml/h/80 cm2 : 1.8 ml/hr

PROHESION TEST



- A spray cycle at ambient temperature was selected and a weak solution of Harrison's mixture would be used.
- An elevated temperature drying cycle was required, with an air temperature within the chamber variable from 23° C to 55° C.
- Air introduction to the test chamber was required during the drying cycle.
- A facility to allow cyclic wetting and drying cycles from a minimum of one hour to a maximum of ten hours was essential.
- The test samples should be placed on racks on the cabinet walls so that the surfaces of all panels were exposed to the spray.

These essential conditions were incorporated together with other features which we considered vital in any form of spray chamber. The Mebon Prohesion Cabinet was then produced.

SHORTFALL OF SALT SPRAY TEST

2 CYCLIC CORROSION TEST

Designation: G85 - 11

Standard Practice for Modified Salt Spray (Fog) Testing¹

1

AS 2331.3.13—2006 Reconfirmed 2017

Australian Standard®

Methods of test for metallic and related coatings

Method 3.13: Corrosion and related property tests—Wet (salt fog)/dry/humidity

2 CYCLIC CORROSION TEST (CCT)

CYCLIC CORROSION TEST METHOD

CYCLE E

(Normative)

E1 SALT FOG TEST SOLUTION

The spray solution shall be prepared as described in Appendix F by dissolving sodium chloride in water to give a concentration of (50 ± 10) g/L. The pH of the solution shall be in the range of 6.0 to 7.0.

E2 CYCLE

The cabinet shall be set up to perform the following cycle:

Step	Time h	Temperature °C	Condition	Notes
1	4	35 ±2	Salt fog	3
2	2	60 ±2	Dry off	
3	0.5	40 ±2		
4	2	50	Wet: 95% RH or over	
5	Go bac	k to step 1	Repeated up to the required duration (4000 h)	

NOTE: This cycle corresponds with the CCT-1 cycle.

E3 SALT FOG DEPOSITION RATE

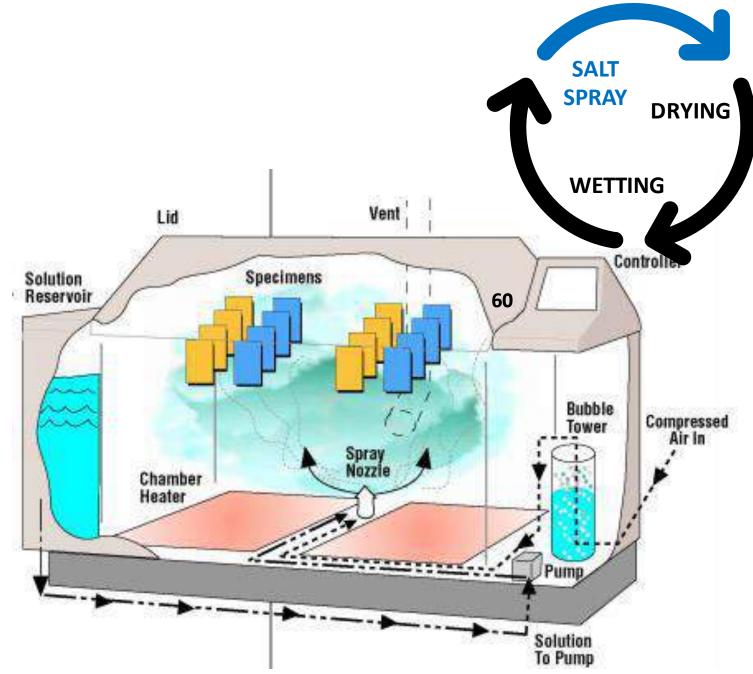
The salt fog deposition rate shall be 1 mL/h to 2 mL/h, when the salt fog is collected over a 24 h period (see Clause 9).

E4 DURATION

Unless otherwise agreed, the cycle shall be repeated for 4000 h.

CYCLIC CORROSION TEST METHOD

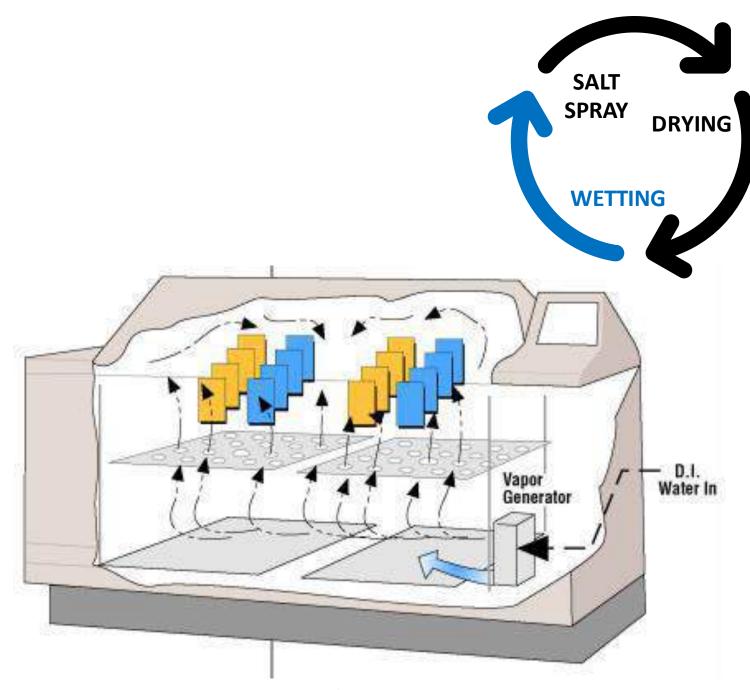
Table 1 — Test conditions


	Salt mist conditions			
1	1) Temperature	35 °C ± 1 °C		
	2) Salt solution	pH 6,5 to 7,2, salt concentration 50 g/l \pm 5 g/l as described in Clause 4		
	"Dry" conditions			
2	(The air is purged under dry conditions.)			
	1) Temperature	60 °C ± 1 °C		
	2) Relative humidity	< 30 %		
	"Wet" conditions			
3	(Condensation on the test specimens shall not occur under wet conditions.)			
	1) Temperature	50 °C ± 1 °C		
	2) Relative humidity	> 95 %		
	Period and content of a single exposure cycle	Total period 8 h, as follows:		
		Salt mist spray 2 h		
4		"Dry" conditions 4 h		
		"Wet" conditions 2 h		
		(These times include the time for reaching the specified temperature for each condition.)		
	Time to reach the specified condition	Mist to "Dry" < 30 min		
	(i.e. period taken for temperature and humidity to reach			
5	the specified values once the test condition has begun)	"Wet" to Mist < 30 min		
		(Mist conditions are attained almost instantaneously once this condition begins.)		
6	Angle at which test specimens are supported	20° ± 5° to the vertical		
NOT	F. The + tolerances given are the allowable operational flu	uctuations, which are defined as the positive and negative		

NOTE The ± tolerances given are the allowable operational fluctuations, which are defined as the positive and negative deviations from the setting of the sensor at the operational control set point during equilibrium conditions. This does not mean that the set value may vary by plus/minus the amount indicated from the given value.


Not to be reproduced or disseminated without BlueScope's permission

CYCLIC CORROSION TEST METHOD


Source: AS 2331.3.13

CYCLIC CORROSION **TEST** (SALT SPRAY)

CYCLIC CORROSION **TEST** (DRYING)

CYCLIC CORROSION TEST (HUMIDITY)

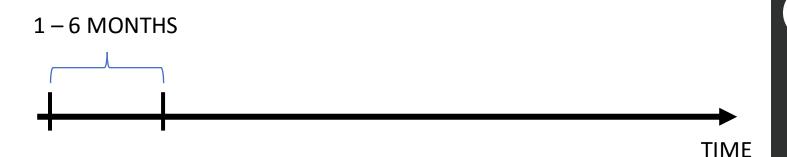

AS/NZS 2728

TABLE 11
EXPOSURE REQUIREMENTS FOR ACCELERATED CORROSION TESTS

	Exposure, h							
	Salt s	pray	Cyclic corresion					
Product type	Test method AS 2331.3.1 (NSS test) for steel substrates	Test method AS 2331.3.2 (ASS test) for aluminium substrates	Test method AS 2331.3.13 for steel substrates (CCT1 cycle)	Test method AS 2331.3.13 for aluminium substrates				
2	100	100	200	N/A				
3	500	500	1000	N/A				
4	1000	1000	2000	N/A				
5	2000	0001	4000	N/A				
6	2000	1000	4000	N/A				

2 CYCLIC CORROSION TEST (CCT)

CYCLIC CORROSION TEST DURATIONS

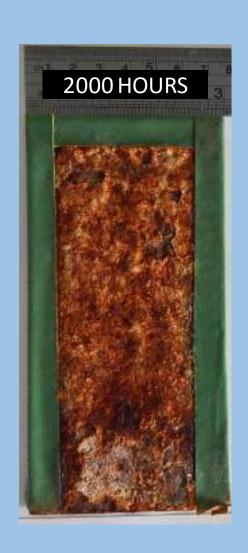
MS 2383

Table 6. Exposure duration for cyclic corrosion test

Corrosivity Category	Exposure duration (h)
C2	200
С3	1 000
C4 (T)	2 000
C5-I	4 000
C5-M	4 000

CYCLIC CORROSION TEST DURATIONS

EXAMPLES OF CYCLIC CORROSION TEST RESULTS



SST VS CCT AT 1000 HOURS

SST VS CCT AT 2000 HOURS

OUTDOR WEATHERING TEST

TABLE JI CHARACTERIZATION OF NEW ZEALAND CORROSION TEST SITES

	Owner/Site							
Criteria	BRANZ	Works consultancy services Central labs Gracefield Lower Hutt	PPG South Manukau heads (see Note I)	New Zealand Steel Rotorus (geothermal)	Pacific Coil Coaters			
	Judgeford				Coastal Muriwai (see Note 2)	Penrose Auckland		
Rating as to ISO 9223	C2	C3	C4	C5	C4	C3		
Latitude/longitude	41.11/174.56	4.14/174.55	37,04/174.33	1-1-1	35°49.37'8/174°25.51'E	36.56/174.51		
Distance to sea, km	11 to NW 15 to SSW	17 to NW 1 to S	0.05 (see Note 3)	90	10	1.2		
Average annual rainfall, mm	1300 (see Note 4)	1350	1350	1500	1242	1250		
Average annual sunshine, h	1900 (see Note 4)	2000	2200	2200	2048	2100		
Mean temperature °C	13	13	15	13	14.9	15		
Solar radiation, mWh/cm ¹	360	370	390	420	390	420		
Range Annual Humidity				12702	CASTOR			
-winter, %	34	83	86	87	75.6	86		
—summer, %	77	78	82	78	84.2	76		
—annual, %	79	90	83	82	83	80		
Time of wetness—annual (number of hours the relative humidity exceeds 80%)	(m)	50	:=:	-	(-	1-01		
Airborne atmospheric chloride, mg/m². day	1+:		=	-	1-	==		
Airborne atmospheric sulfur dioxide, mg/m², duy*	=	- 2	-		===	=		
One year corrosion rate, µm/y (g/m².y)—								
Mild steel	19 (153)	21(167)	42(327)	550	78,5	29(229)		
-Copper bearing steel (CSIRO)	201925-00	100000	43.5 (340.1)	-	-	199		
Zinc	0.77 (5.5)	1.0 (7.0)	4.15 (29.6)	100	5.44	0.84(6.0)		
-Wire on bolt	(see Note 6)	-	-		2	_		

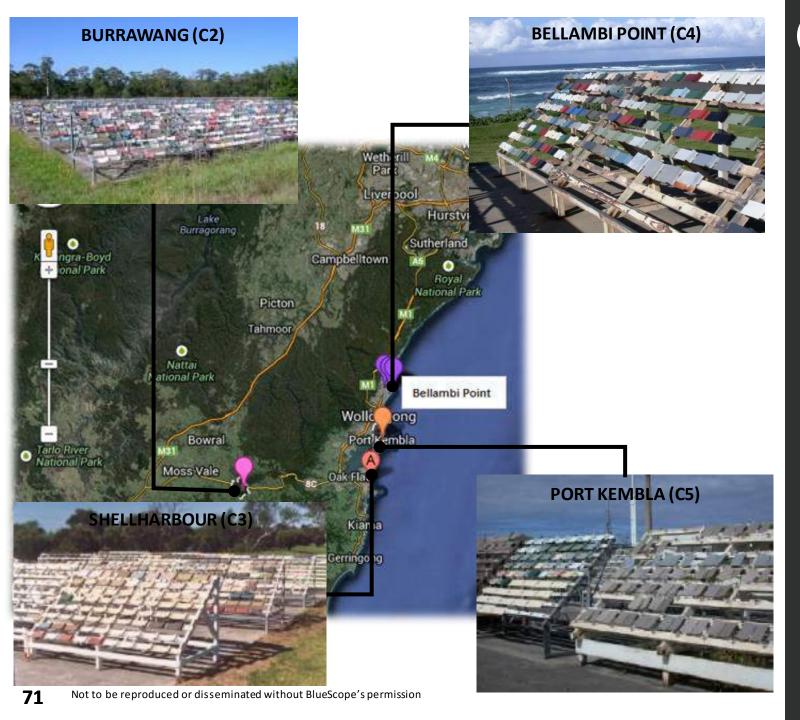

TEST SITES

TABLE J2
CHARACTERIZATION OF AUSTRALIAN CORROSION TEST SITES

	OwnerSite						
Criteria	110	BlueScope Steel	CSIRO	Belmont (Beach			
	Bellambi Point	Shellharbour	Port Kembla	Flinders marine site	NSW		
Rating as to ISO 9223	C4	C3	CS	C4	C5		
Latitude/longitude	34,6/150.8	34.6/150.8	34.5/150.9	38,29/145.2	32.0/152.4		
Orientation	-	(N	Any		
Distance to sea, km	0.05	0.3	0.05	0.1	0.2		
Direction of prevailing winds	NE/S	NE/SE	NE/SE	W			
Degree of industrialization	Nil	NII	Low	Nil	Nil		
Average annual rainfall, mm	1580	1580	1277	750	1142		
Annual mean temperature—				-10-			
—at 9 s.m., °C	17	17	17.6	14	16.7		
—at 3 p.m., °C	19	19	19.4	16	19.8		
—overall, °C	17	17		15			
Solar radiation, mWh/cm ²	460	460		430	480		
Average humidity—							
-winter, %	=			124			
—summer, %	-	(199			
—annual, %	62 to 67	60 to 67		67	65		
Time of wetness—annual (number of hours the relative humidity exceeds 80%)	12	230		6 <u>0</u>	5650		
Airhorne atmospheric chloride, mg/m², day*	-	 21		31.4 (16.7)	250-350		
Airborne atmospheric sulfar dioxide, mg/m2, day	2.55	-		1088	-		
One year corrosion rate, µm/year (g/m².y)—	1)						
—mild steel	35.5 (275.8)	18.1(140.6)	(120.5)	36,9 (240.1)	100-600 (300)		
—zinc	4.94 (35.3)	1.64 (11.7	7.9	6.22 (44.4)	3.0-7.1 (5.7)		

Mean value over year. Standard deviation in brackets to indicate variability.

TEST SITES

TEST SITES OWNED BY BLUESCOPE

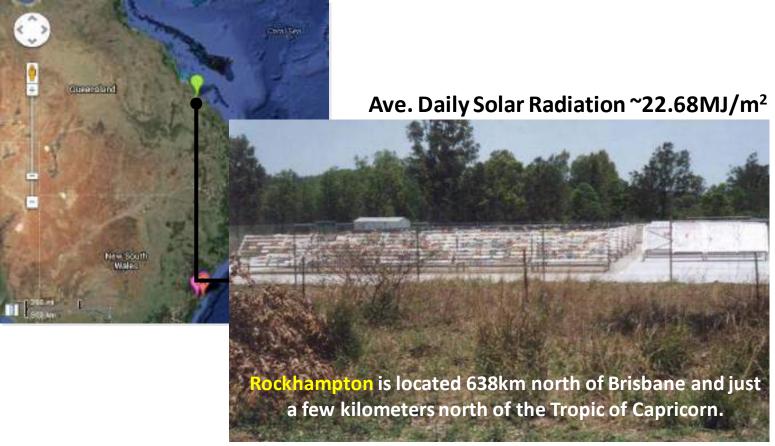
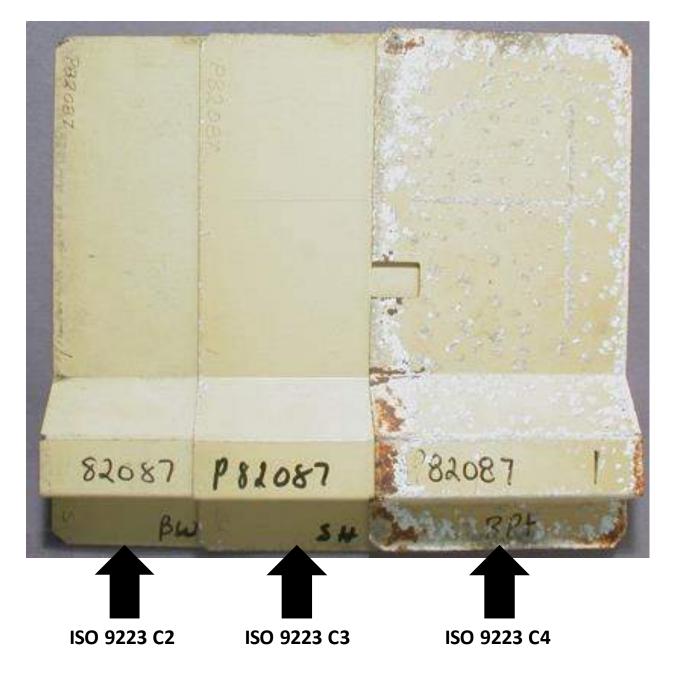

TEST SITES (C4)

TABLE III


RATING OF SEVERE UV DURABILITY TEST SITES IN AUSTRALIA IN TERMS
OF SOLAR WEATHERING INDEX

Site	Latitude degrees	Sunshine daily average h	Solar radiation (average daily) MJ/m ²	Annual rainfall	Solar weathering index 10 ⁸ β∑fln(n=2)*
Birdsville	26	>10	23.4	23.4	14.0
Rockhampton	23	8,3	22.68	2268	9.3
Darwin	12	8.5	21.24	2124	9.4
Townsville	19	8,1	20.88	2088	9.2

^{*} These figures were derived from information in an article titled 'Solar Weathering Indices for Australian Sites' by K. G. Martin (Division of Building Research Technical Paper No. 18, 1-33 (1977), and which is available from the CSIRO Division of Building Construction and Engineering, Highett, Melbourne.

TEST SITES (C4)

3 OUTDOOR WEATHERING TEST

EXAMPLES OF OUTDOOR EXPOSURE TEST RESULTS

ISO 9223 C4 – 45 months (unwashed) at Muriwai

Salt Spray Test (SST) – 2000 hours 3 OUTDOOR WEATHERING TEST

OUTDOOR WEATHERING **TEST** VS SALT SPRAY **TEST**

ISO 9223 C4 – 45 months (unwashed) at Muriwai

Cyclic Corrosion Test (CCT) – 2000 hours 3 OUTDOOR WEATHERING TEST

OUTDOOR WEATHERING **TEST** VS CYCLIC CORROSION **TEST**

4 PROJECT SITE CASE STUDIES

4 PROJECT SITE CASE STUDIES

COMPARISON BETWEEN 2 PRODUCTS AFTER 5 YEARS

Source: BlueScope Inspection, FC24-18

4 PROJECT SITE CASE STUDIES

BEACH RESORTS 5 YEARS IN SEVERE MARINE INFLUENCE

Source: BlueScope's photos, Lexis Hibiscus, Port Dickson

TRIED AND TESTED IN THE SPECIFIC ENVIRONMENT

Source: BlueScope's photos, Lexis Hibiscus, Port Dickson

4 PROJECT SITE CASE STUDIES

STUDIES DONE TO OBSERVE THE COLOUR PERFORMANCE

Source: BlueScope inspection, CS-XPD-03

OF COLOUR PERFORMANCE AFTER 12 YEARS

Source: BlueScope inspection, CS-XPD-03

EFFECT OF ACCUMULATION

EFFECT OF SCRATCHES ON COATED STEEL

Colerbond

VERMOE

Zincalume[®]

TrueCore*

