

WHAT EXACTLY ARE STANDARDS AND **CERTIFICATIONS?** AND WHY DOES IT **MATTER?**

1 WHAT ARE STANDARDS

Standards Governing Body

Mission:

To provide **CREDIBLE STANDARDISATION** and **ACCREDITATION SERVICES** to facilitate international trade, develop industry competitiveness towards enhance economic growth, societal and environmental well-being.

OWNER OF MALAYSIAN STANDARDS

Source: https://www.jsm.gov.my/about-us#.YXZF8xpBw5t; https://www.jsm.gov.my/documents/10180/1400459/Act+549+-+Standards+of+Malaysia+Act+1996+as+at+30+April+2012+BI.pdf/bf6a5b90-e6ad-40b8b4a0-47530d01400f Certification Body recognition/usage of the specific Standards Documents

Mission:

To provide innovative solutions through **TESTING**, **INSPECTION** and **CERTIFICATION SERVICES** for our customers to be globally competitive.

USER OF STANDARDS

accredited by government agency to be able to provide Certification/Testing Services

Products/Process

CERTIFIED by an

Accredited Certification

Body

BASED ON RELEVANT PUBLISHED STANDARDS

1 WHAT ARE STANDARDS

MALAYSIAN STANDARD DOCUMENTS

MS 2651

MS 1196

MS 2383

MS 2500

STANDARDS FOR DIFFERENT STAGES OF A CLADDING **PRODUCT**

MS 2383:2020

Contents

	I	Page
Committee	e representation	ii
Foreword		iv
Committee	e representation	ii
1	Scope	1
2	Normative references	1
3	Terms and definitions	2
4	Product corrosivity category	3
5	Performance requirements for prefinished flat steel products	6
6	Marking	11
Annex A	Purchasing guidelines	13
Annex B	Atmospheric environment	15
Annex C	Reverse impact test	16
Annex D	T-bend adhesion test	18
Annex E	Storage and handling of products	20
Annex F	Summary of testing	21

LOOK FOR THE SCOPE OF **EACH** STANDARD

MS 2383:2020

Prefinished flat steel products for interior/exterior building applications Performance requirements (First revision)

1 Scope

This Malaysian Standard specifies performance requirements for continuously organic coated/laminated flat steel product and that are intended for fabrication into products for use in the construction or finishing of buildings.

This standard classifies prefinished flat steel products into six types according to their performance, in respect to durability and aesthetics, in environments of varying severity.

NOTES:

- 1. Advice and recommendations on information to be supplied by the purchaser at the time of enquiry or order are contained in the purchasing guidelines set out in Annex A.
- 2. The performance of a coating will be dependent on the corrosion resistance of the substrate in the particular environment and on climatic influences that directly affect the coating. Such influences include solar radiation and the presence of water vapour (see Annex B).

1 WHAT ARE STANDARDS

LOOK FOR THE SCOPE OF EACH STANDARD

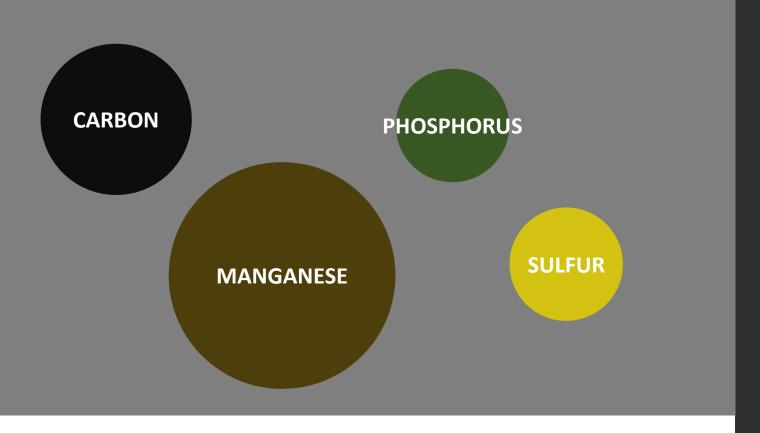
AS 1397

ASTM A792

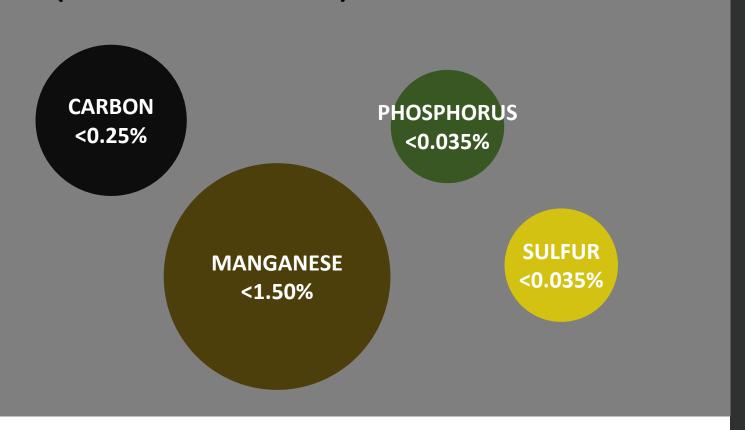
JIS G 3321

MS 1196

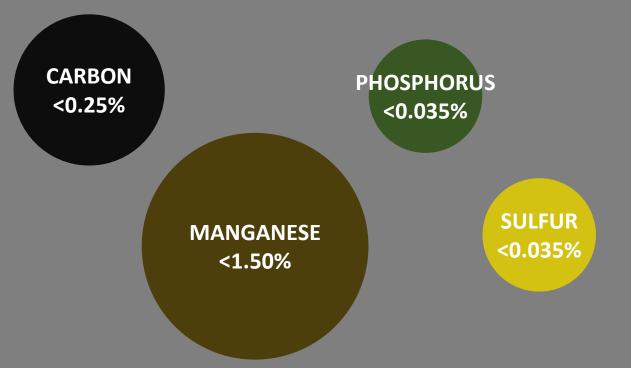
QUALITY TESTS OF DIFFERENT STANDARDS


DIFFERENT NATIONAL STANDARDS FOR METALLIC COATED STEEL (TYPE AZ)

List of Tests	AS 1397	ASTM A792	JIS G 3321	MS 1196
Quality Test				
Chemical Composition	Yes	Yes	Yes	Yes
Tensile Test	Yes	Yes	Yes	Yes
Bend Test (Adhesion)	Yes	Yes	Yes	Yes
Dimensional Tolerances	Yes	Yes	Yes	Yes
Coating Mass	Yes	Yes	Yes	Yes


TESTING SCOPES FOR METALLIC COATED STEEL (TYPE AZ)

STEEL


CHEMICAL COMPOSITION

STEEL (STRUCTURAL GRADE)

CHEMICAL COMPOSITION (MS 1196)

STEEL (STRUCTURAL GRADE)

Max. Chemical Composition %	AS 1397	ASTM A792	JIS G 3321	MS 1196
Carbon, C	0.20	0.20	0.30	0.25
Manganese, Mn	1.20	1.35	2.50	1.50
Phosphorus, P	0.04	0.04	0.20	0.035
Sulfur, S	0.03	0.04	0.05	0.035

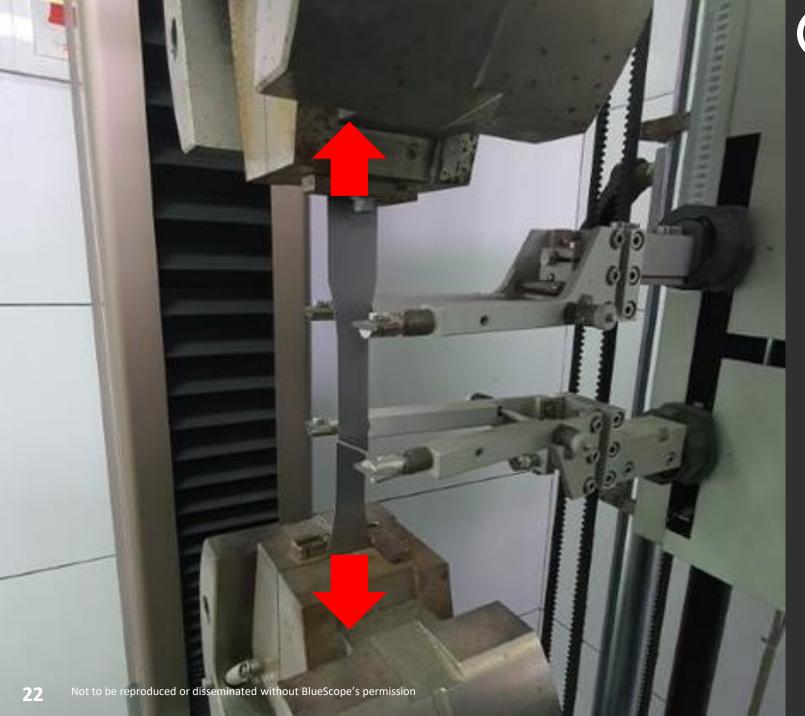
CHEMICAL COMPOSITION REQUIREMENTS

TENSILE TEST MACHINE

Image source: https://www.zwickroell.com/products/static-materials-testing-machines/universal-testing-machines-for-static-applications/tensile-testing-machine-for-high-test-loads-from-330-kn/

"DOG BONE" SAMPLE

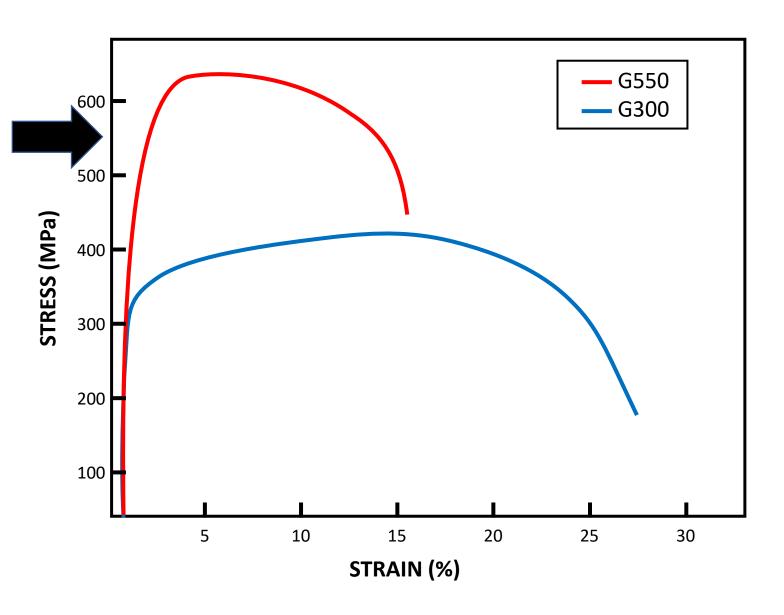
Image source: https://www.zwickroell.com/products/static-materials-testing-machines/universal-testing-machines-for-static-applications/tensile-testing-machine-for-high-test-loads-from-330-kn/

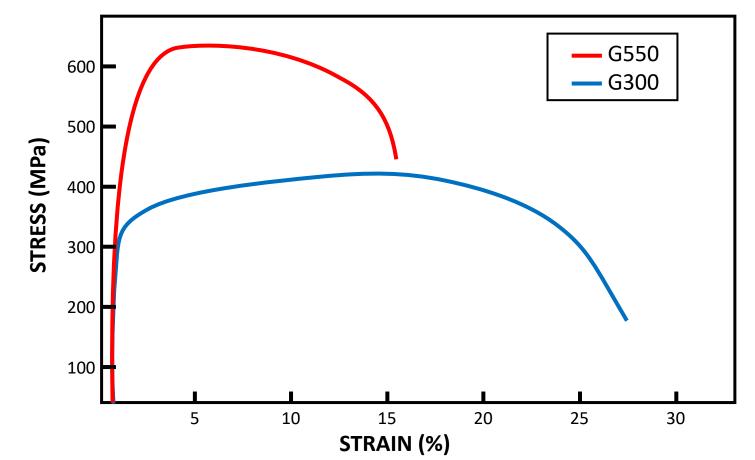


PLACED ONTO THE MACHINE

Image source: https://www.zwickroell.com/products/static-materials-testing-machines/universal-testing-machines-for-static-applications/tensile-testing-machine-for-high-test-loads-from-330-kn/

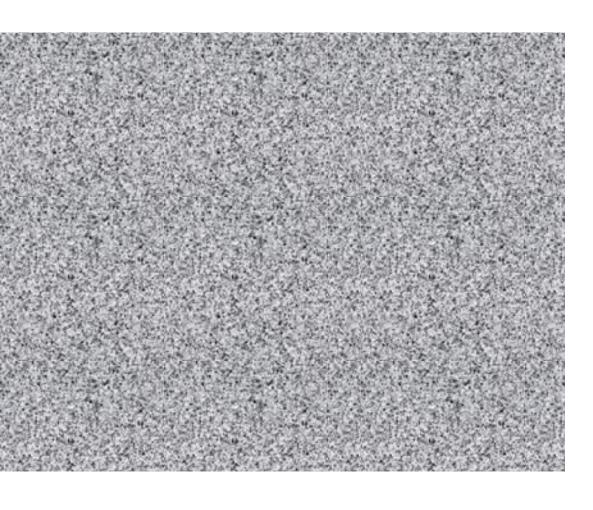
PLACED ONTO THE MACHINE




MACHINE WILL PULL THE SAMPLE

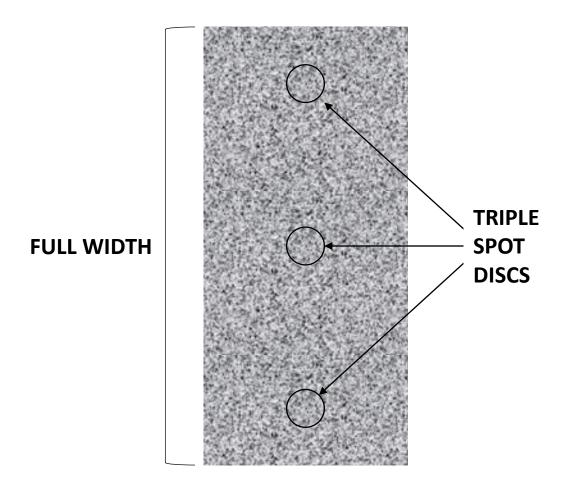
SAMPLE IS PULLED UNTIL IT FAILS

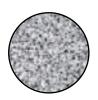
STRESS-STRAIN CURVE



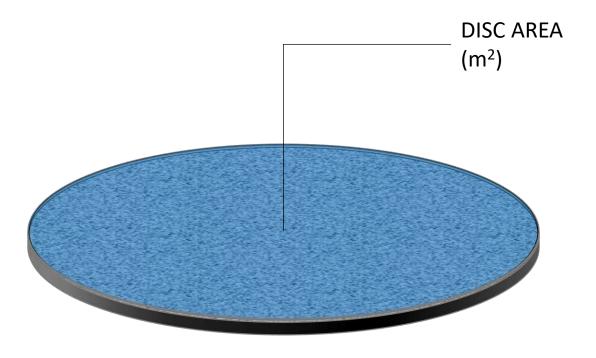
Example: G550	AS 1397	ASTM A792	JIS G 3321	MS 1196
Yield Strength	>550MPa	>550MPa	>560MPa	>550MPa
Tensile Strength	>550MPa	>570MPa	>570MPa	>570MPa
Elongation	2*	-	-	-

TENSILE TEST REQUIREMENTS





FULL WIDTH SAMPLE


3 DISCS SAMPLED

MEASURE OF DISC AREA

BOTH SIDES METALLIC COATING REMOVED

	AS 1397	ASTM A792	JIS G 3321	MS 1196
Coating Mass Range	AZ150 & AZ200	AZ100 AZ110 AZ120 AZ150 AZ165 AZ180 AZ210	AZ70 AZ90 AZ120 AZ150 AZ170 AZ185 AZ200	AZ50 AZ70 AZ90 AZ100 AZ120 AZ150 AZ165 AZ185 AZ200

COATING MASS RANGE

	AS 1397	ASTM A792	JIS G 3321	MS 1196
Coating Mass Range	AZ150 &	AZ100 :	AZ70 :	AZ50 :
	AZ200	AZ210	AZ200	AZ200

COATING MASS RANGE

AS/NZS 2728

ASTM A755

JIS G 3322

MS 2383

QUALITY TESTS OF DIFFERENT STANDARDS

DIFFERENT NATIONAL STANDARDS **FOR PREPAINTED** COATED STEEL

List of Tests	AS/NZS 2728	ASTM A755	JIS G 3322	MS 2383		
Quality Test	Quality Test					
Appearance (Gloss, Colour)	Yes	Yes	Yes	Yes		
Dry Film Thickness	Yes	Yes	Yes	Yes		
Paint Adhesion	Yes	Yes	Yes	Yes		
Scratch Resistance	Yes	Yes	Yes	Yes		

TESTING SCOPES FOR PREPAINTED COATED STEEL

(3) PERFORMANCE TESTS OF **DIFFERENT** STANDARDS

List of Tests	AS/NZS 2728	ASTM A755	JIS G 3322	MS 2383		
Performance Test						
Humidity Resistance	Yes	Optional	Yes	Yes		
Paint Durability	Yes	Optional	-	-		
Corrosion Resistance	Yes	Optional	Yes	Yes		

1 Scope

This Malaysian Standard specifies performance requirements for continuously organic coated/laminated flat steel product and that are intended for fabrication into products for use in the construction or finishing of buildings.

This standard classifies prefinished flat steel products into six types according to their performance, in respect to durability and aesthetics, in environments of varying severity.

NOTES:

- 1. Advice and recommendations on information to be supplied by the purchaser at the time of enquiry or order are contained in the purchasing guidelines set out in Annex A.
- 2. The performance of a coating will be dependent on the corrosion resistance of the substrate in the particular environment and on climatic influences that directly affect the coating. Such influences include solar radiation and the presence of water vapour (see Annex B).

3 PERFORMANCE TESTS OF DIFFERENT STANDARDS

PAINT DURABILITY TEST

TO DETERMINE PAINT LASTINGNESS

PAINT COATING

METALLIC COATING

STEEL

PREPAINTED COATED STEEL CROSS SECTIONAL VIEW

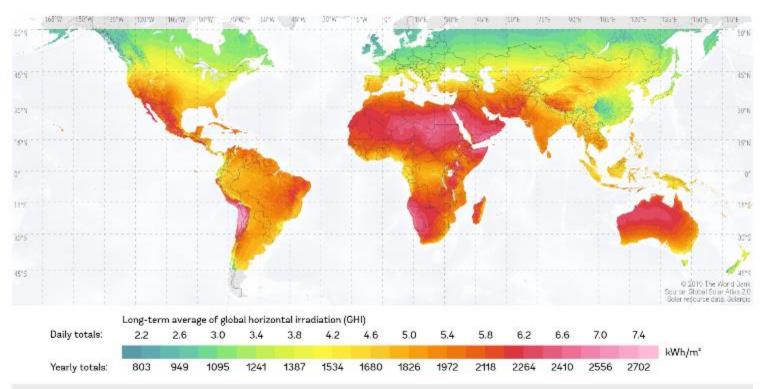
YEAR 20

PAINT COATING

METALLIC COATING

STEEL

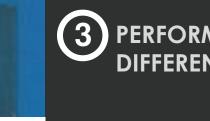
PAINT EROSION


List of Tests	AS/NZS 2728	ASTM A755	JIS G 3322	MS 2383			
Performance Test							
Humidity Resistance	Yes	Optional	Yes	Yes			
Paint Durability	Outdoor Exposure	Optional	-	-			
Corrosion Resistance	Yes	Optional	Yes	Yes			

OUTDOOR EXPOSURE TEST

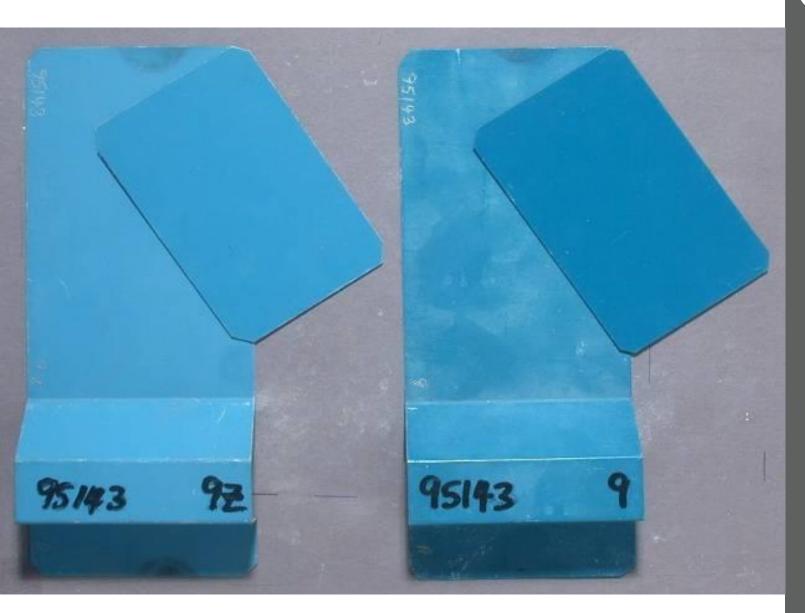
UV IRRADIATION INTENSITY

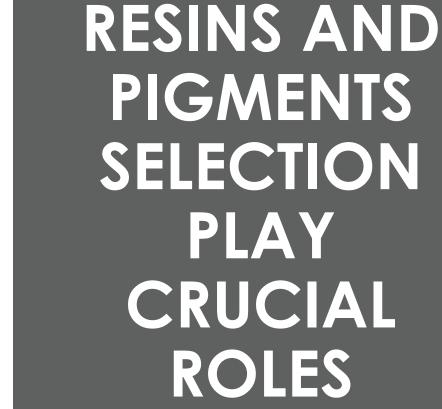
OUTDOOR **EXPOSURE** (SEVERE UV SITE)



OUTDOOR EXPOSURE (TROPICAL SITE)

SAME COLOUR, **DIFFERENT** FADING RATE




Source: PPG Literature

MORE INTENSE COLOUR IS NOT ALWAYS BETTER

 $\Delta E \sim 16.3$

 $\Delta E \sim 7.4$

List of Tests	AS/NZS 2728	ASTM A755	JIS G 3322	MS 2383		
Performance Test						
Humidity Resistance	Yes	Optional	Yes	Yes		
Paint Durability	Yes	Optional	-	-		
Corrosion Resistance	SST & CCT	Optional	SST / CCT	SST / CCT		

CORROSION RESISTANCE TEST

Figure 1. Classified of IDW Chloride Map

Figure 2. Classified of IDW Nitrate Map

Figure 3. Classified of IDW Sulphate Map

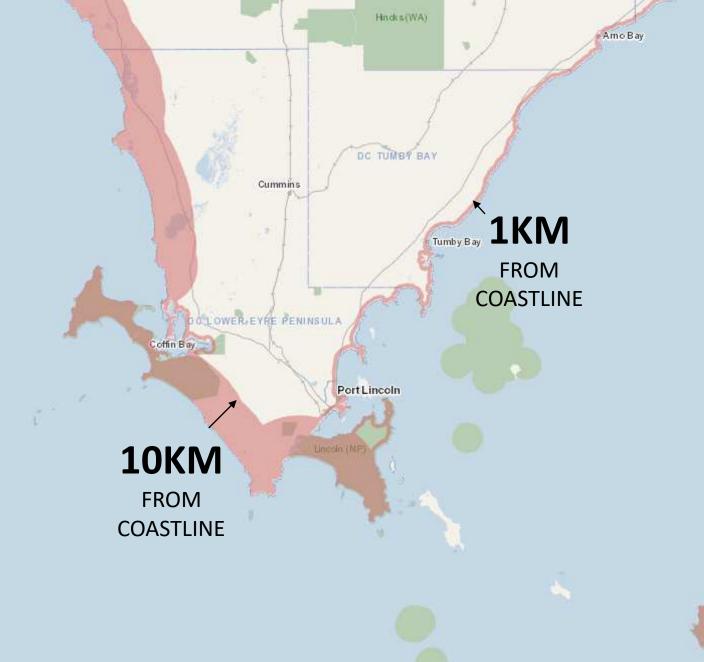
Figure 4. Classified of IDW Rainfall Map

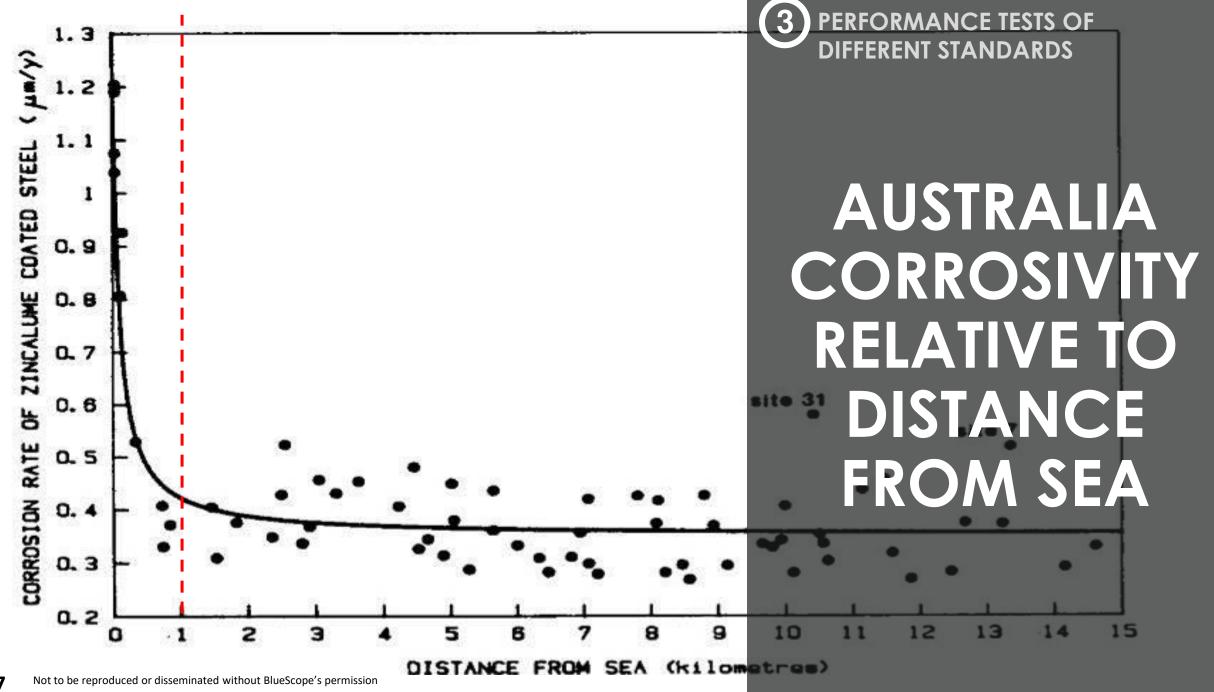
Figure 5. Local Classified IDW time of wetness map for Peninsular Malaysia

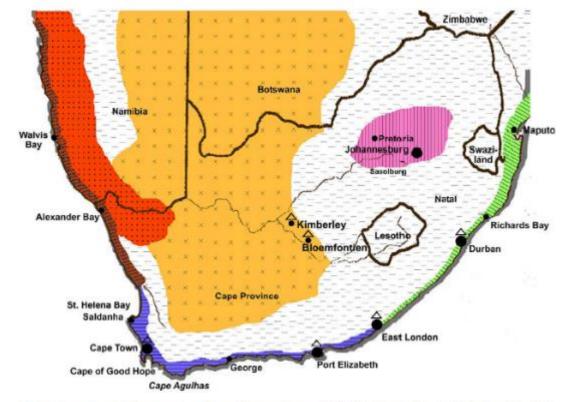
MALAYSIA CORROSIVITY MAPPING

Figure 6. Corrosion Risk Map Peninsular Malaysia based on 10 Year of Data

MALAYSIA CORROSIVITY MAPPING

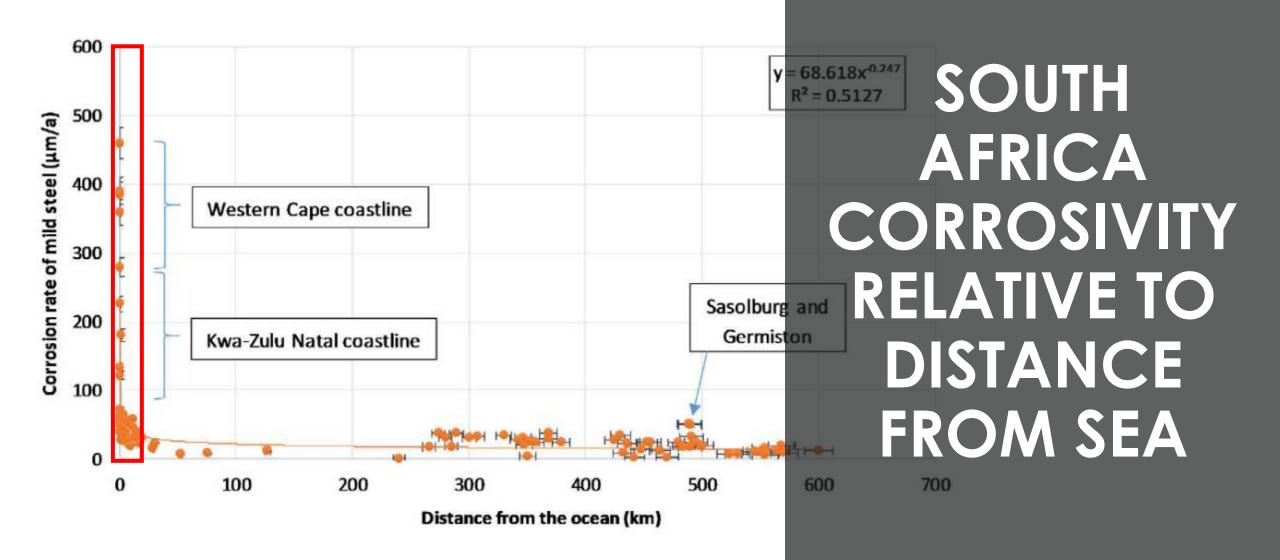


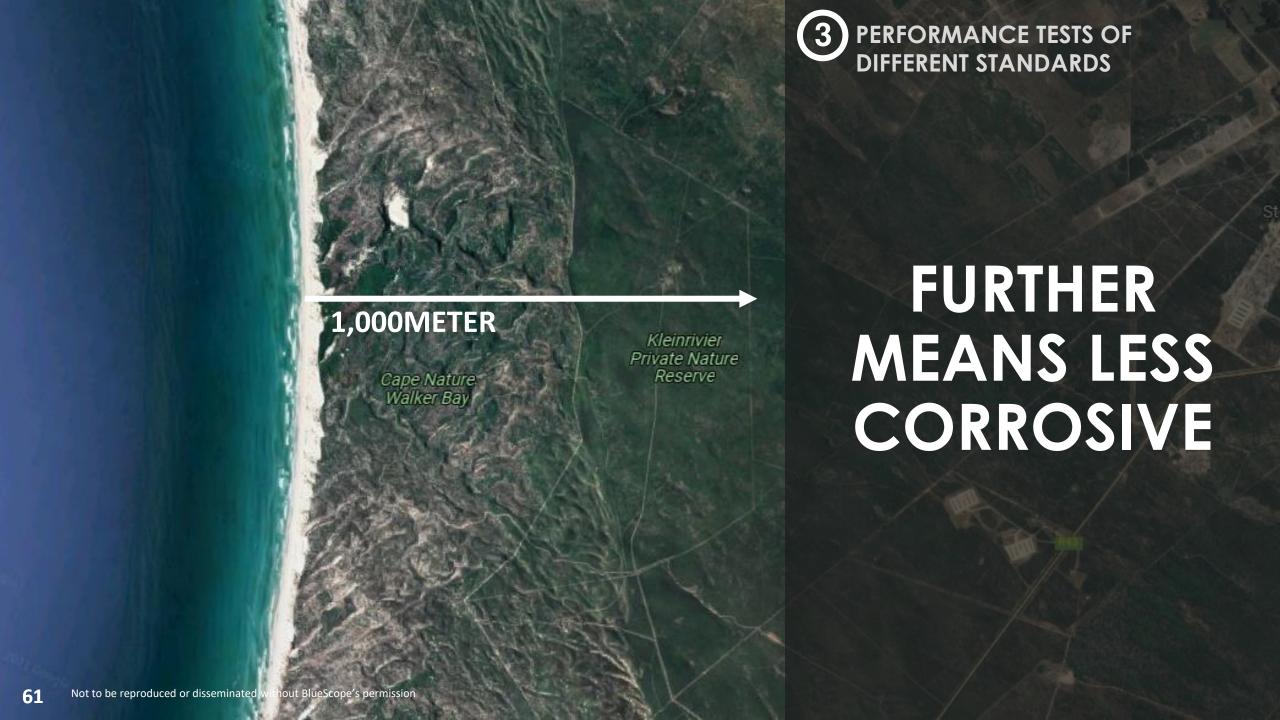



TABLE J2
CHARACTERIZATION OF AUSTRALIAN CORROSION TEST SITES

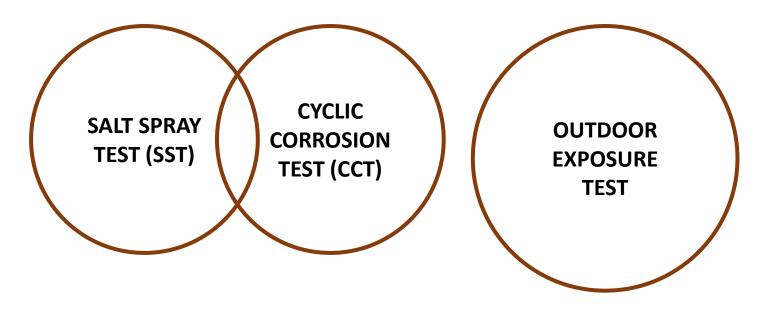
	Owner/Site					
Criteria	BlueScope Steel			CSIRO	Belmont (Beach)	
	Bellambi Point	Shellharbour	Port Kembla	Flinders marine site	NSW	
Rating as to ISO 9223	C4	C3	C5	C4	C5	
Latitude/longitude	34.6/150.8	34.6/150.8	34.5/150.9	38.29/145.2	32.0/152.4	
Orientation	-	-		N	Any	
Distance to sea, km	0.05	0.3	0.05	0.1	0.2	
Direction of prevailing winds	NE/S	NE/SE	NE/SE	W		
Degree of industrialization	Nil	Nil	Low	Nil	Nil	
Average annual rainfall, mm	1580	1580	1277	750	1142	
Annual mean temperature—						
—at 9 a.m., °C	17	17	17.6	14	16.7	
—at 3 p.m., °C	19	19	19.4	16	19.8	
—overall, °C	17	17		15		
Solar radiation, mWh/cm2	460	460		430	480	
Average humidity—						
-winter, %	_	-		_		
—summer, %	_	_		-		
—annual, %	62 to 67	60 to 67		67	65	
Time of wetness—annual (number of hours the relative humidity exceeds 80%)	-	-		-	5650	
Airborne atmospheric chloride, mg/m2. day*	_	_		31.4 (16.7)	250-350	
Airborne atmospheric sulfur dioxide, mg/m2. day	-	_		_	_	
One year corrosion rate, µm/year (g/m².y)						
—mild steel	35.5 (275.8)	18.1(140.6)	(120.5)	30.9 (240.1)	100-600 (300)	
—zinc	4.94 (35.3)	1.64 (11.7	7.9	6.22 (44.4)	3.0-7.1 (5.7)	

^{*} Mean value over year. Standard deviation in brackets to indicate variability.


AUSTRALIA CORROSIVITY MAPPING


Key	Description	Type of corrosion	Mild steel corrosion rate µm/year	Galvanised steel sheet life in years
X	Inland arid	Semi desert	5 – 10	> 30
	Inland	Rural	10 – 20	> 20
	Inland dry	Desert	< 5	> 30
П	Inland urban	Inland industrial	15 – 40	5 – 15
Δ	Inland	Industrial	10 – 30	5 – 15
1	Sub-tropical marine	Medium to severe marine	50 - 80	3 – 5
	Desert marine (mists)	Severe marine corrosion	80 - 100	0.5 – 2
	Temperate marine	Marine	30 – 50	3 – 7
-	Intertidal to 5 km inland	Severe marine corrosion	100 – 300	Up to 3

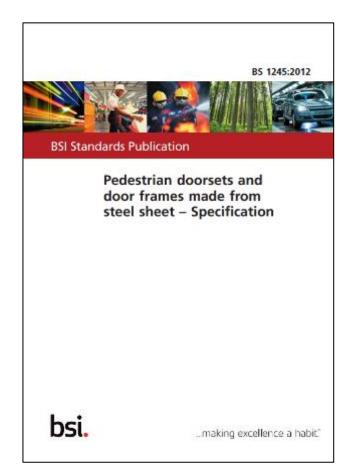
SOUTH AFRICA CORROSIVITY MAPPING (OLD)



DISTANCE FROM SEA AFFECTS CORROSIVITY **OF AN ENVIRONMENT**

List of Tests	AS/NZS 2728	ASTM A755	JIS G 3322	MS 2383		
Performance Test						
Humidity Resistance	Yes	Optional	Yes	Yes		
Paint Durability	Yes	Optional	-	-		
Corrosion Resistance	SST & CCT	Optional	SST / CCT	SST / CCT		

TYPE OF CORROSION RESISTANCE TESTS


bsi.

...making excellence a habit.

- Grade 0 NO DEFINED corrosion resistance
- Grade 1 LOW corrosion resistance
- Grade 2 MODERATE corrosion resistance
- Grade 3 HIGH corrosion resistance
- Grade 4 VERY HIGH corrosion resistance
- Grade 5 EXCEPTIONALLY HIGH corrosion resistance

CORROSION RESISTANCE CLASSIFICATION FOR DOOR **FRAME** APPLICATION

Salt Spray Test (SST) Duration

•	Grade 0 – NO DEFINED corrosion resistance	-
•	Grade 1 – LOW corrosion resistance	24 hours
•	Grade 2 – MODERATE corrosion resistance ————	48 hours
•	Grade 3 – HIGH corrosion resistance ————	96 hours
•	Grade 4 – VERY HIGH corrosion resistance ————	240 hours
	Grade 5 – EXCEPTIONALLY HIGH corrosion resistance —	480 hours

RELATIVELY SHORT SALT SPRAY DURATIONS

- C1 VERY LOW
- C2 LOW
- C3 MEDIUM
- C4 HIGH OR TROPICAL
- C5-I VERY HIGH (INDUSTRIAL)
- C5-M VERY HIGH (GEOTHERMAL, MARINE)

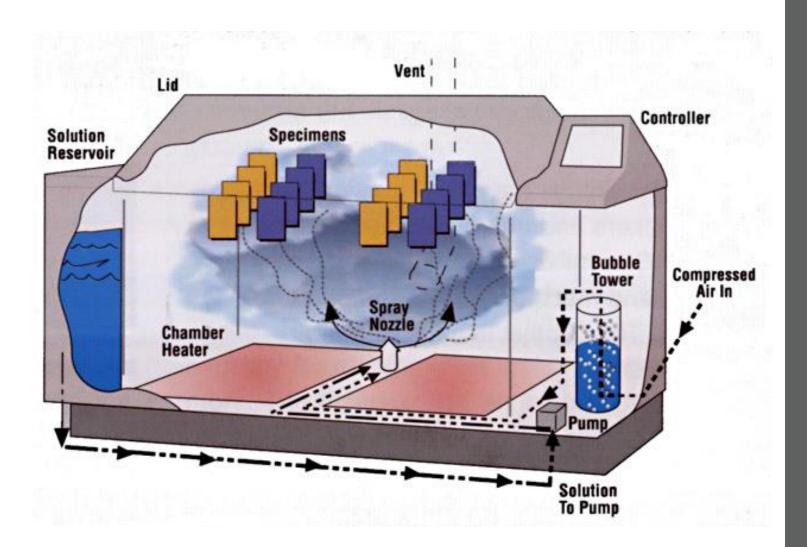
CORROSION RESISTANCE CLASSIFICATION FOR EXTERIOR CLADDING APPLICATION

Salt Spray Test (SST) Duration

• C1 − VERY LOW
• C2 − LOW → 100 hours
• C3 − MEDIUM → 500 hours
• C4 − HIGH OR TROPICAL → 1000 hours
• C5-I − VERY HIGH (INDUSTRIAL) → 2000 hours
• C5-M − VERY HIGH (GEOTHERMAL, MARINE) → 2000 hours

3 PERFORMANCE TESTS OF DIFFERENT STANDARDS

CLASSIFICATION & SALT SPRAY TEST DURATIONS



Cyclic Corrosion
Test (CCT) Duration

• C1 − VERY LOW
• C2 − LOW → 200 hours
• C3 − MEDIUM → 1000 hours
• C4 − HIGH OR TROPICAL → 2000 hours
• C5-I − VERY HIGH (INDUSTRIAL) → 4000 hours
• C5-M − VERY HIGH (GEOTHERMAL, MARINE) → 4000 hours

3 PERFORMANCE TESTS OF DIFFERENT STANDARDS

CLASSIFICATION & CYCLIC CORROSION TEST DURATIONS

SST & CCT ARE SIMULATED TESTS IN A CHAMBER

Designation: B117 - 18

Standard Practice for Operating Salt Spray (Fog) Apparatus¹

This standard is issued under the listed designation H117; the number immediately following the designation indicates the year of retained adoption on in the case of previous, the year of has revision. A morbit in parentheses indicates the year of last mappened, A regimental epolicy (a) indicates an effected change since the last revision or regiment.

This mouled has been approved for use by agreem of the U.S. Department of Differen-

AS 2331.3.1—2001 Recentifymed 201

Australian Standard

Methods of test for metallic and related coatings

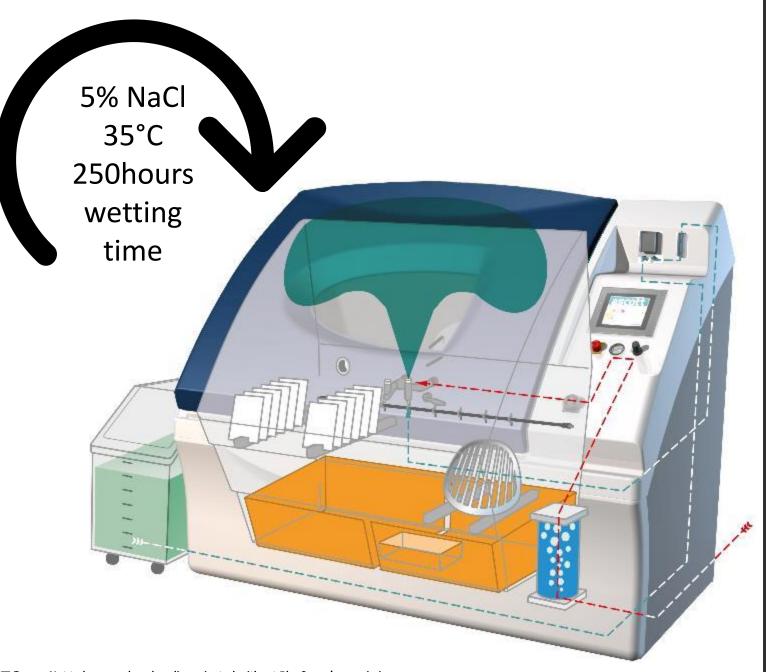
Method 3.1: Corrosion and related property tests—Neutral salt spray test (NSS test)

INTERNATIONAL STANDARD

ISO 9227

Fourth edition 2017-03

Corrosion tests in artificial atmospheres — Salt spray tests


Essais de corrosion en atmosphères artificielles — Essais aux brouillards salins

3 PERFORMANCE TESTS OF DIFFERENT STANDARDS

SALT SPRAY TEST STANDARDS

ource:

http://www.paintinfo.com/TechInfo/Introduction%20to%20Cyclic%20Corrosion%20Testing.pdf; ISO 9227:2012; AS 2331.3.1

CONTINUOUS SALT SPRAY TEST

ource:

http://www.paintinfo.com/TechInfo/Introduction%20to%20Cyclic%20Corrosion%20Testing.pdf; ISO 9227:2012; AS 2331.3.1

EXAMPLE OF SALT SPRAY TEST RESULT

ASTM B117

3. Significance and Use

- 3.1 This practice provides a controlled corrosive environment which has been utilized to produce relative corrosion resistance information for specimens of metals and coated metals exposed in a given test chamber.
- 3.2 Prediction of performance in natural environments has seldom been correlated with salt spray results when used as stand alone data.
- 3.2.1 Correlation and extrapolation of corrosion performance based on exposure to the test environment provided by this practice are not always predictable.
- 3.2.2 Correlation and extrapolation should be considered only in cases where appropriate corroborating long-term atmo-72 spheric exposures have been conducted.

PERFORMANCE TESTS OF **DIFFERENT STANDARDS**

NO DIRECT CORRELATION WITH OUTDOOR **EXPOSURE TEST**

Salt spray was first used for corrosion testing around 1914. In 1939, the neutral salt spray test was incorporated as ASTM B117.1 This traditional salt spray specifies a continuous exposure to a 5% salt fog at 35°C. During the course of 80 years of use, there have been many modifications and refinements to B117. In spite of all these refinements, there has long been general agreement that "salt spray" test results do not correlate well with the corrosion seen in actual atmospheric exposures. Nevertheless, B117

3. Significance and Use

- 3.1 This practice provides a controlled corrosive environment which has been utilized to produce relative corrosion resistance information for specimens of metals and coated metals exposed in a given test chamber.
- 3.2 Prediction of performance in natural environments has seldom been correlated with salt spray results when used as stand alone data.
- 3.2.1 Correlation and extrapolation of corrosion performance based on exposure to the test environment provided by this practice are not always predictable.
- 3.2.2 Correlation and extrapolation should be considered only in cases where appropriate corroborating long-term atmospheric exposures have been conducted,

AS 2331.3.1

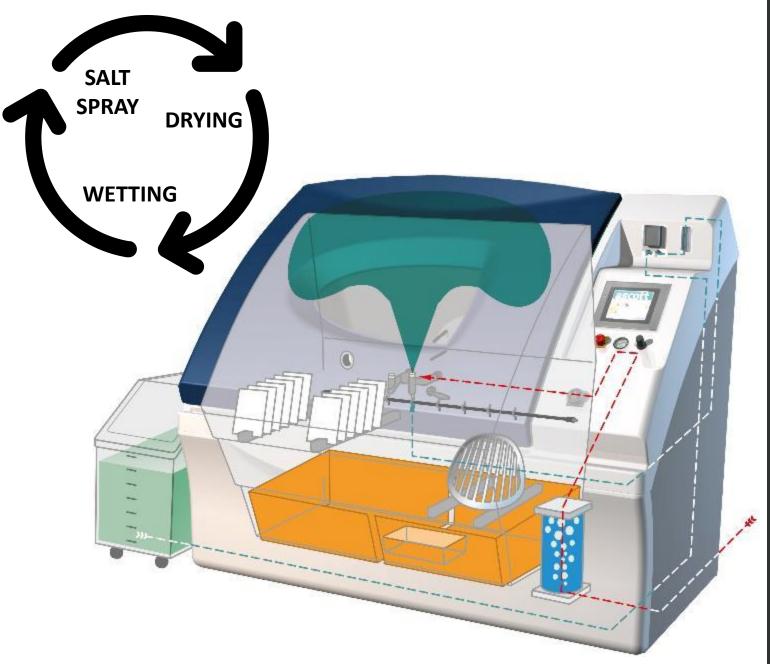
1 SCOPE

This Standard sets out the method for the neutral salt spray (NSS) test for the assessment of corrosion resistance of inorganic and organic coatings on metallic substrates.

NOTES:

- 1 The method does not specify the type of test item, the exposure period or the assessment criteria. Such details are normally specified in the relevant product Standard or determined by agreement between the purchaser and the supplier.
- It is important that the results obtained from the test are not regarded as having a direct correlation with environments in which items may be exposed in service or as indicating the relative corrosion resistance of different coatings.
- The test procedures described in this Standard do not necessarily include all of the

ISO 9227:2017


The salt spray methods are all suitable for checking that the quality of a metallic material, with or without corrosion protection, is maintained. They are not intended to be used for comparative testing as a means of ranking different materials relative to each other with respect to corrosion resistance or as means of predicting long-term corrosion resistance of the tested material.

3 PERFORMANCE TESTS OF **DIFFERENT STANDARDS**

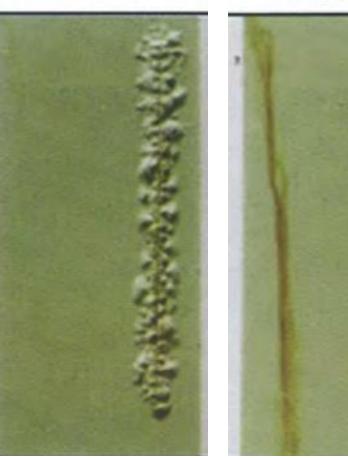
RESULTS MUST BE TAKEN WITH A GRAIN OF SALT

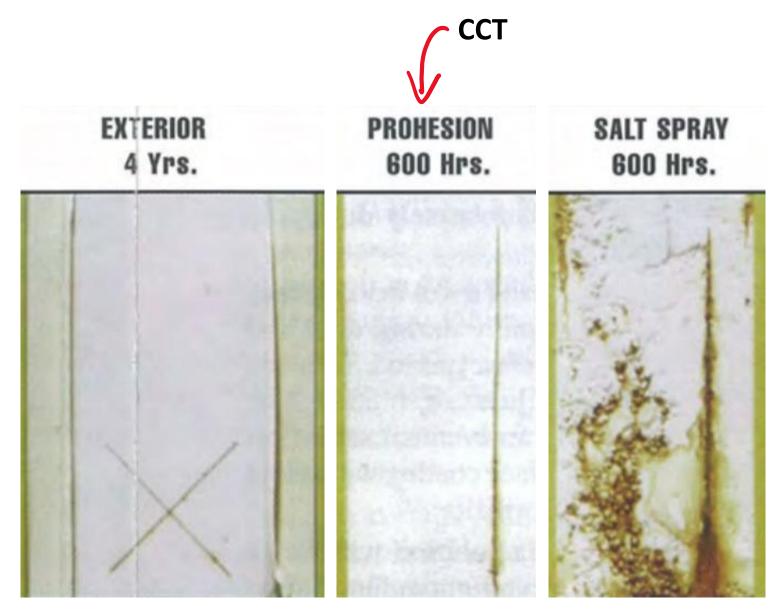
http://www.paintinfo.com/TechInfo/Introduction%20to%20Cyclic%20Corrosion%20Test ng.pdf; ISO 9227:2012; AS 2331.3.1

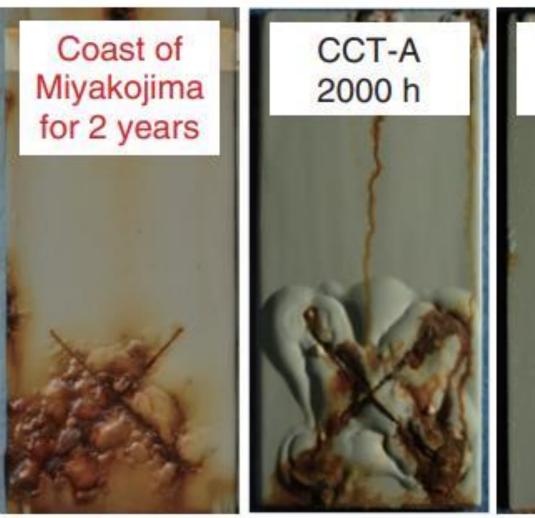
CYCLIC CORROSION TEST

Source:

http://www.paintinfo.com/TechInfo/Introduction%20to%20Cyclic%20Corrosion%20Testing.pdf; ISO 9227:2012; AS 2331.3.1




EXTERIOR 14 Months


SALT SPRAY 1400 Hrs.

SALT SPRAY TEST RESULT **DEVIATES** FROM OTHERS

SALT SPRAY TEST RESULT DEVIATES FROM OTHERS

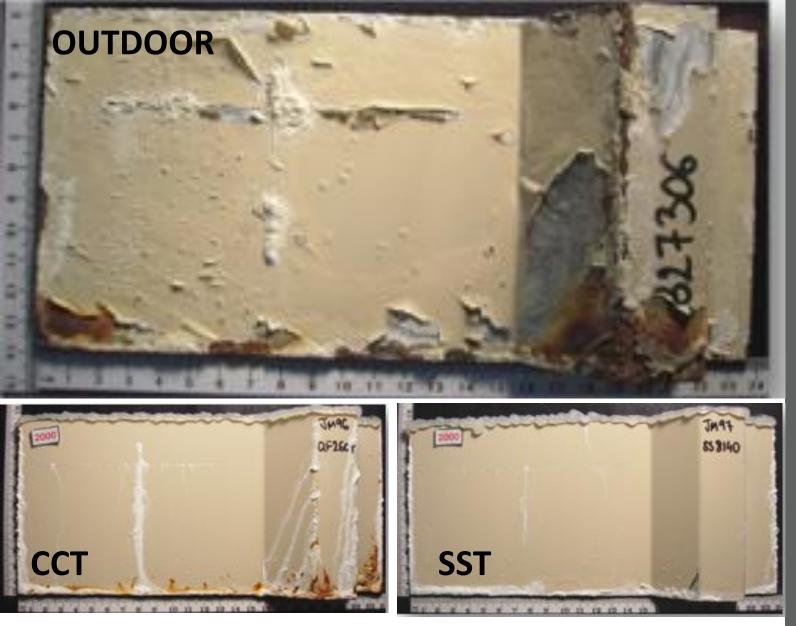
SALT SPRAY TEST RESULT DEVIATES FROM OTHERS

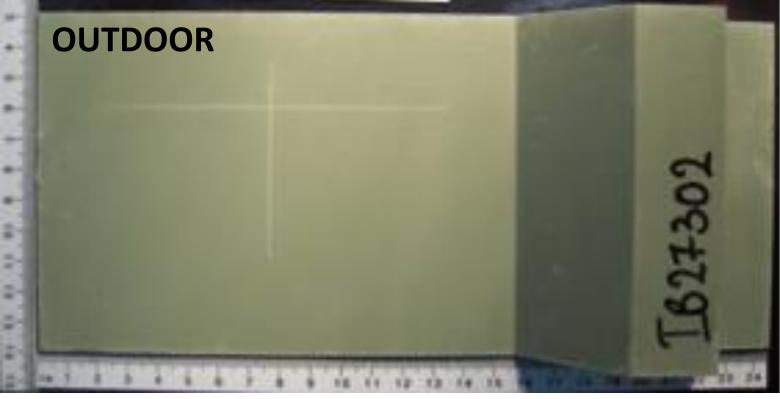
TABLE J2
CHARACTERIZATION OF AUSTRALIAN CORROSION TEST SITES

	Owner/Site					
Criteria	BlueScope Steel			CSIRO	Belmont (Beach)	
	Bellambi Point	Shellharbour	Port Kembla	Flinders marine site	NSW	
Rating as to ISO 9223	C4	C3	C5	C4	C5	
Latitude/longitude	34.6/150.8	34.6/150.8	34.5/150.9	38.29/145.2	32.0/152.4	
Orientation	-	-		N	Any	
Distance to sea, km	0.05	0.3	0.05	0.1	0.2	
Direction of prevailing winds	NE/S	NE/SE	NE/SE	W		
Degree of industrialization	Nil	Nil	Low	Nil	Nil	
Average annual rainfall, mm	1580	1580	1277	750	1142	
Annual mean temperature—						
—at 9 a.m., °C	17	17	17.6	14	16.7	
—at 3 p.m., °C	19	19	19.4	16	19.8	
—overall, °C	17	17		15		
Solar radiation, mWh/cm ²	460	460		430	480	
Average humidity—						
—winter, %	_	-		_		
—summer, %	_	_				
—annual, %	62 to 67	60 to 67		67	65	
Time of wetness—annual (number of hours the relative humidity exceeds 80%)	-	-		_	5650	
Airborne atmospheric chloride, mg/m2. day*	_	_		31.4 (16.7)	250-350	
Airborne atmospheric sulfur dioxide, mg/m2. day		-		3-4	_	
One year corrosion rate, µm/year (g/m².y)						
—mild steel	35.5 (275.8)	18.1(140.6)	(120.5)	30.9 (240.1)	100-600 (300)	
—zinc	4.94 (35.3)	1.64 (11.7	7.9	6.22 (44.4)	3.0-7.1 (5.7)	

^{*} Mean value over year. Standard deviation in brackets to indicate variability.

AUSTRALIA CORROSIVITY MAPPING




ISO 9223 EXPOSURE SITE (C4)

OUTDOOR EXPOSURE RESULTS OF SAME **PRODUCT** SPEC.

OUTDOOR EXPOSURE RESULT VS CCT / SST

OUTDOOR EXPOSURE RESULT VS CCT / SST

5.10 Corrosion resistance

The accelerated corrosion tests to be carried out with respective product corrosivity category are given in 5.10.1 and 5.10.2. Product corrosivity category C4 and C5, the purchaser and manufacturer have an option to choose either 5.10.1 or 5.10.2.

5.10.1 SALT SPRAY TEST

When suitably prepared test specimens (scribed or unscribed, as appropriate) are exposed to the corrosion test in accordance with ISO 9227 (Neutral salt spray, NSS) for specified duration as in Table 4, the prefinished flat steel product shall comply with the requirements of Table 5.

Table 4. Exposure duration for neutral salt spray tests

Corrosivity Category	Exposure duration (h)	
C2	100	
C3	500	
C4 (T)	1 000	
C5-I	2 000	
C5-M	2 000	

5.10.2 CYCLIC CORROSION TEST

When suitably prepared test specimens (scribed or unscribed, as appropriate) are exposed to the corrosion test in accordance with ISO 14993 for specified duration as in Table 6, the prefinished flat steel product shall comply with the requirements of Table 7.

Table 6. Exposure duration for cyclic corrosion test

Corrosivity Category	Exposure duration (h)	
C2	200	
C3	1 000	
C4 (T)	2 000	
C5-I	4 000	
C5-M	4 000	

CURRENT MS 2383 PERFORMANCE REQUIREMENTS

5.10 Corrosion resistance

The accelerated corrosion tests to be carried out with respective product corrosivity category are given in 5.10.1 and 5.10.2. Product corrosivity category C4 and C5, the purchaser and manufacturer have an option to choose either 5.10.1 or 5.10.2.

CORROSIVITY	Salt Spray Test (SST)	Cyclic Corrosion Test (CCT)
C2	100 hours	-
C3	500 hours	-
C4	1000 hours	2000 hours
C5-I	2000 hours	4000 hours
C5-M	2000 hours	4000 hours

3 PERFORMANCE TESTS OF DIFFERENT STANDARDS

CURRENT MS 2383 PERFORMANCE REQUIREMENTS

1 Scope

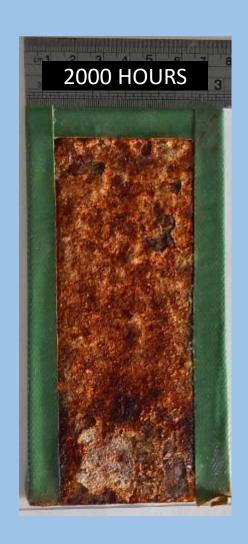
This Malaysian Standard specifies performance requirements for continuously organic coated/laminated flat steel product and that are intended for fabrication into products for use in the construction or finishing of buildings.

This standard classifies prefinished flat steel products into six types according to their performance, in respect to durability and aesthetics, in environments of varying severity.

NOTES:

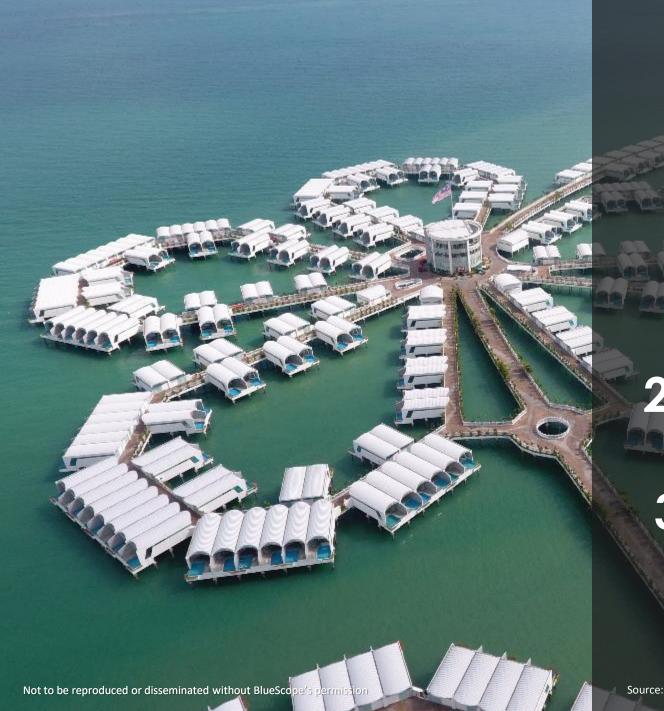
- 1. Advice and recommendations on information to be supplied by the purchaser at the time of enquiry or order are contained in the purchasing guidelines set out in Annex A.
- 2. The performance of a coating will be dependent on the corrosion resistance of the substrate in the particular environment and on climatic influences that directly affect the coating. Such influences include solar radiation and the presence of water vapour (see Annex B).

3 PERFORMANCE TESTS OF DIFFERENT STANDARDS


RECAP THE SCOPE

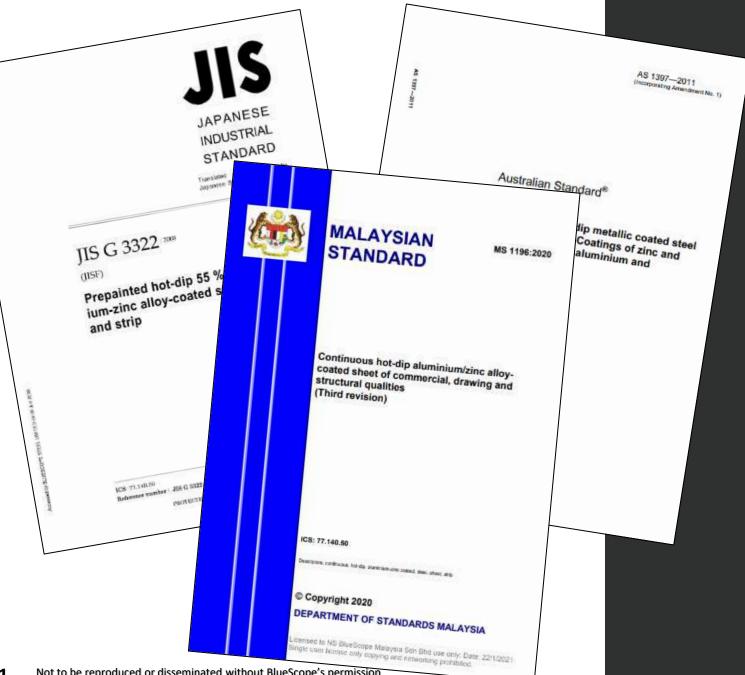
SALT SPRAY TEST (SST)

CYCLIC CORROSION TEST (CCT)



SAME SUBSTRATE TESTED IN C4 CATEGORY

"WILL PRODUCT(A) CERTIFIED TO A STANDARD PERFORM SIMILARLY TO PRODUCT(B) CERTIFIED TO THE SAME STANDARD?"


3 PERFORMANCE TESTS OF DIFFERENT STANDARDS

FINAL NOTE

SUMMARY

- 1. THE SCOPE OF A STANDARD
- 2. THE QUALITY SPECS & REQUIREMENTS
 - 3. THE MORE REALISTIC PERFORMANCE TESTS

QUESTION ANSWER SESSION

THANK YOU

Colerbond

VERMOE

Zincalume^{*}

TrueCore*

